向量范数的理解

范数的公式

机器学习中经常会看到这个词,按照自己的理解做一下总结,范数大可理解为距离的计算。范数是来衡量向量与原点的远近。下面是几个范数的计算公式,我们先看公式,不要惧怕公式,然后再解释公式的内在含义:

1-范数
在这里插入图片描述
2-范数
在这里插入图片描述
p-范数
在这里插入图片描述

+无穷-范数
在这里插入图片描述
-无穷-范数
在这里插入图片描述
由上面的数学表达式,我们可以归纳一下:除了两个无穷范数以外,剩下的范数都是一个规律,即n范数就是一堆数字的绝对值n次方之和再开个n次方的根号;或者说,n范数就是一堆数字的绝对值n次方之和的n次方根。这是从计算方法层面上的认知。

范数公式的理解

通过上面的观察可知,范数首先是一个函数。其次,范数表征了距离这个物理量,可以用于比较不同的向量。
例如:比较各个维度向量大小
在一维情况下,有两个数 3, 4 4>3
在二维情况下,有两个向量 (2,5),(3,4)比较这两个向量的大小,就是计算离原点的距离,这个距离可以表示向量的长度,根据长度进行比较。使用到的就是上面的2-范数公式计算, 2 2 + 5 2 \sqrt {2^2+5^2} 22+52 = 29 \sqrt {29} 29 , 3 2 + 4 2 \sqrt {3^2+4^2} 32+42 = 25 \sqrt {25} 25 ,所以向量(2,5) > (3,4)
在这里插入图片描述

在三维情况下,有两个向量(3,4,5),(5,6,7)求距离,使用到的也是上面的2-范数
3 2 + 4 2 + 5 2 \sqrt {3^2+4^2+5^2} 32+42+52 = 50 \sqrt {50} 50 , 5 2 + 6 2 + 7 2 \sqrt {5^2+6^2+7^2} 52+62+72 = 110 \sqrt {110} 110
在这里插入图片描述

在更多维的情况下,可能不能直观的通过画图来观察"距离",但实际的含义基本一致。
例如五维的计算比较
在这里插入图片描述
距离的计算相当于
在这里插入图片描述
所以,当我们想求一个向量的长度或者两点间的距离时,两个向量间的距离的计算,就是把原点替换成另外一个向量,用2-范数。

python库的使用
# 计算向量x的模
import numpy as np

x = np.array([3, 4, 5])
# norm函数默认就是求2-范数。
print(np.linalg.norm(x))  
# 如果要指定其他的范式,需要显示的传入ord=2
print(np.linalg.norm(x, ord=2))
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值