【PostgreSQL数据分析实战:从数据清洗到可视化全流程】2.3 窗口函数与高级聚合(ROW_NUMBER()/RANK()/SUM() OVER())

👉 点击关注不迷路
👉 点击关注不迷路
👉 点击关注不迷路


PostgreSQL窗口函数与高级聚合:从排序到动态分析的全场景应用

在这里插入图片描述

1. 窗口函数核心概念解析

  • 在PostgreSQL数据分析中,窗口函数(Window Function)是突破传统聚合函数局限性的关键技术。
  • 与普通聚合函数(如SUM、AVG)不同,窗口函数在计算时不会将多行数据合并为一行,而是为每一行数据生成一个计算结果,这些结果依赖于与当前行相关的一个数据窗口。

1.1 窗口函数语法结构

<窗口函数> OVER (<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

言析数智

创作不易,感谢客官的打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值