3D Shape Classification——Point-based Graph based

点云分类——图卷积

ECC (Dynamic Edge-conditioned Filters)

DGCNN

 

代表1:ECC (Dynamic Edge-conditioned Filters)

ECC的卷积操作和常规的二维图像卷积操作都是一种加权平均操作,不同之处在于ECC可以作用在任何图结构上,并且其权重由节点间的边权所决定。

如上图所示,ECC将所有点作为顶点构图 G=(V,E),并设定点特征(密度、RGB等)和边特征,边特征是一个6维向量:

前三项是相对于采样中心点i的偏移,后三项是角特征。对图中的任意一个点来说,邻居点是所有跟它直接相连的点以及它本身,可以用knn取,也可以在固定半径的范围内取,实验中固定半径的方法更好。

ECC的卷积公式可表示为:

F是MLP,w是F的可学习权重,b是可学习偏置。L(j,i)是边ij的边特征,X(j)是点特征。

边特征L(j.i)的维度经过MLP之后输出权重theta(j,i), theta(j,i) 的维度要与点特征X(j)一致。

权重向量与点特征向量相乘之后,经过avg聚合函数,再加上一个偏置得到采样中心点特征。

 

Pooling :

基于VoxelGrid算法实现图粗化,事先使用Graph Coarsening方法为其建立一个 h^{max} 层的图金字塔,然后在网络的pooling层,根据金字塔中对应的相邻层的结点映射关系来执行pooling操作。具体做法:

  • 使用一个分辨率为 r^h 的3d网格框住整个点云P^{h-1} 

  • 对于网格中的每个体素, 用该体素的中心点来表示该体素内的所有点

  • 用上一节的方法对新的点云  P^h 进行图的构造,得到更粗粒度的图 G^{h}

 

代表2:Dynamic Graph CNN (DGCNN)  (TOG2019)

与PointNet结构类似,将MLP换成EdgeConv,以获取点云的局部特征。

MLP没有考虑局部点集的空间关系,EdgeConv考虑了邻域点集的信息,即采用KNN为每个点寻找邻域。

但是DGCNN是在特征空间构图,而ECC是以坐标构图。

EdgeConv:DGCNN在邻域点集局部特征(Xj-Xi)中融入中心点特征Xi构成(Xj-Xi,Xi)输入到MLP中,然后对MLP的输出特征进行聚合得到中心点特征。定义边缘特征为:

,h是MLP

上述内容来自:https://blog.csdn.net/hongbin_xu/article/details/85258278

 

 

ECC与DGCNN对比:

a. 都是动态构图,但方法不一样。ECC是以坐标构图,通过体素化对点云进行池化;DGCNN是在特征空间构图,特征在卷积的过程中一直变化。

b. ECC用6维边特征生成权重,并与点特征相乘,池化后叠加偏置。DGCNN是直接对边特征进行聚合,得到中心点特征。DGCNN在边特征(Xj-Xi)中融入中心点特征Xi构成(Xj-Xi,Xi)输入到MLP中,然后对MLP的输出特征进行聚合得到中心点特征。

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值