《The graph neural network model》笔记

Introduction

该论文应该是最早的讲GNN的论文。该论文的主要工作是实现一个转导(transduction)函数,把图 G G G或者结点 n n n映射到一个m维的嵌入向量: τ ( G , n ) ∈ R m \tau(G,n) \in \mathbb{R}^m τ(G,n)Rm

图领域应用可以分成两类:graph focused 和 node focused。

  • graph focused: 函数把图映射成嵌入向量,然后对图进行分类或回归。
  • node focused: 函数把图上结点映射成嵌入向量,对图上的结点进行分类或回归。

该论文的GNN可以处理循环、有向和无向图。

图可以是positional或者non-positional。他们的区别是,对于每个结点n,positional graphs 存在一个单射函数,为结点n的每个邻居分配一个不同的位置。

常用符号列表:

  • G = ( N , E ) G=(N, E) G=(N,E): 图
  • N N N: 图的所有结点集合
  • E E E: 图的边的集合
  • n e [ n ] ne[n] ne[n]: 结点n的所有邻居
  • c o [ n ] co[n] co[n]: 连接结点n的边
  • l n ∈ R l N \mathbf{l}_n \in \mathbb{R}^{l_N} lnRlN: 结点n上的特征向量/信息,论文里称做结点的标签,是图数据给定的
  • l ( n 1 , n 2 ) ∈ R l E \mathbf{l}_{(n_1, n_2)} \in \mathbb{R}^{l_E} l(n1,n2)RlE: 连接结点和的i边的特征向量/信息,论文称做边的标签,是图数据给定的
  • L = { ( G i , n i , j , t i , j ) ∣ G i = ( N i , E i ) ; n i , j ∈ N i ; t i , j ∈ R m , 1 ≤ i ≤ p , 1 ≤ j ≤ q i } \mathcal{L} = \{(G_i, n_{i,j}, \mathbf{t}_{i,j})| G_i = (N_i, E_i); n_{i,j} \in N_i; \mathbf{t}_{i,j}\in\mathbb{R}^m, 1 \le i \le p, 1 \le j \le q_i\} L={ (Gi,ni,j,ti,j)Gi
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值