Gaussian Mixture Loss

本文探讨了深度学习中的一种损失函数——高斯混合损失(Gaussian Mixture Loss),它通过假设特征服从高斯混合分布来提高特征的类内紧凑性和类间可分离性。文章详细介绍了大型边距GM损失(Large-Margin GM Loss)以及其与center loss的关系,并展示了在实际应用中的效果。
摘要由CSDN通过智能技术生成

Gaussian Mixture Loss

前言

该论文思考了深度神经网络提取的特征与类别之间的关系,假设学习到的特征服从高斯混合分布,提出了高斯混合损失函数,同时提高了特征的类内紧凑性和类间可分离性(intra-class compactness and inter-class separability)。

Gaussian Mixture Loss 1

假设:特征服从高斯混合分布。
有K个类别,每个类别出现的概率为 p ( k ) p(k) p(k),类别k出现特征x的概率是 p ( x ∣ k ) p(x|k) p(xk),则特征x的概率为
p ( x ) = ∑ k = 1 K p ( x ∣ k ) p ( k ) p(x) = \sum_{k=1}^{K} p(x|k) p(k) p(x)=k=1Kp(xk)p(k)
假设概率 p ( x ∣ k ) p(x|k) p(xk)服从正态分布, μ k \mu_k μk为均值, Σ k \Sigma_k Σk为协方差矩阵,则
p ( x ) = ∑ k = 1 K N ( x ; μ k , Σ k ) p ( k ) p(x) = \sum_{k=1}^{K} \mathcal{N} (x; \mu_k, \Sigma_k) p(k) p(x)=k=1KN(x;μk,Σk)p(k)
特征x对应的类别为 z ∈ [ 1 , K ] z \in [1, K] z[1,K],特征x属于类别z的后验概率为
p ( z ∣ x ) = p ( x ∣ z ) p ( z ) ∑ k = 1 K p ( x ∣ k ) p ( k ) = N ( x ; μ z , Σ z ) p ( z ) ∑ k = 1 K N ( x ; μ k , Σ k ) p ( k ) p(z|x) = \frac{p(x|z)p(z)}{\sum_{k=1}^{K}p(x|k)p(k)} = \frac{\mathcal{N} (x; \mu_z, \Sigma_z) p(z)}{\sum_{k=1}^{K} \mathcal{N} (x; \mu_k, \Sigma_k) p(k)} p(zx)=k=1Kp(xk)p(k)p(xz)p(z)=k=1KN(x;μk,Σk)p(k)N(x;μz,Σz)p(z)
从这个公式,我们可以得到结论:x越靠近类别中心 μ z \mu_{z} μz p ( z ∣ x ) p(z|x) p(zx)的值就越大。

因此,分类损失函数为
L c l s = − 1 N ∑ i = 1 N log ⁡ N ( x i ; μ z i , Σ z i ) p ( z i ) ∑ k − 1 K N ( x i ; μ k , Σ k ) p ( z i ) \mathcal{L}_{cls} = - \frac{1}{N} \sum_{i=1}^{N} \log \frac{\mathcal{N}(x_i; \mu_{z_i}, \Sigma_{z_i})p(z_i)}{\sum_{k-1}^{K} \mathcal{N}(x_i; \mu_{k}, \Sigma_{k})p(z_i)} Lcls=N1i=1Nlogk1KN(xi;μk,Σk)p(zi)N(xi;μzi,Σzi)p(zi)

单单优化上面的分类损失不能使提取出来的训练特征趋向于高斯混合分布。例如,一个特征 x i x_i xi可以原理对应类别的中心 μ z i \mu_{z_i} μzi,同时可以被正确分类,只要特征 x i x_i xi相对于其他类别中心更靠近 μ z i \mu_{z_i} μzi。为了解决这个问题,作者添加了一个似然正则化项(likelihood regularization term)
p ( X , Z ∣ μ , Σ ) = ∏ i = 1 N N ( x i ; μ z i , Σ z i ) p ( z i ) p(X,Z|\mu, \Sigma) = \prod_{i=1}^{N} \mathcal{N}(x_i; \mu_{z_i}, \Sigma_{z_i})p(z_i) p(X,Zμ,Σ)=i=1NN(xi;μz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值