Gaussian Mixture Variational Autoencoder with Contrastive Learning for Multi-Label Classification-Accepted to NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications
文章目录
前言
学习该篇论文讲了什么内容,学习method
一、摘要
我们的方法还采用了学习和对齐特征和标签的潜在空间的思想。与基于单峰先验的先前工作相比,C-GMVAE 在潜在空间上施加了高斯混合结构,以缓解后向塌陷和过度正则化问题。
二、method
1.高斯混合潜在的空间
这里通过网络对标签进行embedding,然后进行独立高斯分布