contrastive learning的学习

本文介绍了将高斯混合变分自编码器(C-GMVAE)与对比学习结合应用于多标签分类的方法,旨在解决后向塌陷和过度正则化问题。通过在潜在空间中学习和对齐特征与标签,使用独立高斯分布对标签进行embedding,并利用KL散度计算损失。对比学习策略根据样本是否存在特定标签调整损失,增强特征与标签的相关性。实验证实在mulan数据集上表现出良好效果。
摘要由CSDN通过智能技术生成

Gaussian Mixture Variational Autoencoder with Contrastive Learning for Multi-Label Classification-Accepted to NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications



前言

学习该篇论文讲了什么内容,学习method


一、摘要

我们的方法还采用了学习和对齐特征和标签的潜在空间的思想。与基于单峰先验的先前工作相比,C-GMVAE 在潜在空间上施加了高斯混合结构,以缓解后向塌陷和过度正则化问题。

二、method

在这里插入图片描述

1.高斯混合潜在的空间

在这里插入图片描述

这里通过网络对标签进行embedding,然后进行独立高斯分布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值