各种损失函数

合页损失函数、折页损失函数(Hinge loss)

  损失函数的一个类型,用于分类模型以寻找距离每个样本的距离最大的决策边界,即最大化样本和边界之间的边缘。KSVMs 使用 hinge 损失函数(或相关的函数,比如平方 hinge 函数)。在二元分类中,hinge 损失函数按以下方式定义:
  loss=max(0,1−(y′ y))*
  其中, y’是分类器模型的列输出:y′=b+w_1x_1+w_2x_2+…w_n*x_n;y 是真实的标签,-1 或+1。
  因此,hinge 损失将是下图所示的样子:
在这里插入图片描述

广义线性模型

  深度学习从统计学角度,可以看做递归的广义线性模型。广义线性模型相对于经典的线性模型(y=wx+b),核心在于引入了连接函数g(.),形式变为:
  y=g(wx+b)

  深度学习时递归的广义线性模型,神经元的激活函数,即为广义线性模型的链接函数。逻辑回归(广义线性模型的一种)的Logistic函数即为神经元激活函数中的Sigmoid函数,很多类似的方法在统计学和神经网络中的名称不一样,容易引起初学者的困惑。

  下图是一个对照表:
在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据提供的引用内容,可以得知YOLO v1目标检测算法使用了三种不同的损失函数,分别是位置损失、置信度损失和类别损失。下面将分别介绍这三种损失函数: 1. 位置损失:YOLO v1算法使用均方误差(MSE)作为位置损失函数,用于衡量预测框的位置和实际框的位置之间的差异。位置损失函数的计算公式如下: $$ \lambda_{coord}\sum_{i=0}^{S^2}\sum_{j=0}^{B} \mathbb{1}_{ij}^{obj}[(x_i-\hat{x}_i)^2+(y_i-\hat{y}_i)^2] $$ 其中,$\lambda_{coord}$是一个系数,用于平衡位置损失和置信度损失的权重;$S$是特征图的大小;$B$是每个格子预测的边界框数量;$\mathbb{1}_{ij}^{obj}$是一个指示函数,用于判断第$i$个格子的第$j$个边界框是否包含物体;$(x_i, y_i)$是第$i$个格子的中心坐标;$(\hat{x}_i, \hat{y}_i)$是第$i$个格子的中心坐标的预测值。 2. 置信度损失:YOLO v1算法使用逻辑回归损失作为置信度损失函数,用于衡量预测框和实际框之间的重叠程度。置信度损失函数的计算公式如下: $$ \sum_{i=0}^{S^2}\sum_{j=0}^{B} \mathbb{1}_{ij}^{obj}[(C_i-\hat{C}_i)^2+\lambda_{noobj}\mathbb{1}_{ij}^{noobj}(C_i-\hat{C}_i)^2] $$ 其中,$C_i$是第$i$个格子的置信度得分;$\hat{C}_i$是第$i$个格子的置信度得分的预测值;$\lambda_{noobj}$是一个系数,用于平衡包含物体的格子和不包含物体的格子的权重;$\mathbb{1}_{ij}^{noobj}$是一个指示函数,用于判断第$i$个格子的第$j$个边界框是否不包含物体。 3. 类别损失:YOLO v1算法使用交叉熵损失作为类别损失函数,用于衡量预测框的类别和实际框的类别之间的差异。类别损失函数的计算公式如下: $$ \sum_{i=0}^{S^2}\sum_{j=0}^{B} \mathbb{1}_{ij}^{obj}\sum_{c=1}^{C} (p_i(c)-\hat{p}_i(c))^2 $$ 其中,$C$是类别的数量;$p_i(c)$是第$i$个格子的第$j$个边界框属于第$c$个类别的概率得分;$\hat{p}_i(c)$是第$i$个格子的第$j$个边界框属于第$c$个类别的概率得分的预测值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值