Course 2 - 改善深层神经网络 - 第一周作业(1&2&3) - 1.2正则化

实现L2正则化和dropout正则化

L2正则化主要影响了

          1.求取cost函数的值

           2.在求取dw,db的值得时候也会影响

  dropout正则化主要影响了:

          1.前向传播,要乘以D(是否随机将该节点设置为无效:0)

           2.后向传播 ,要乘以相应的D

1。L2正则化

1.1工具类:主要实现前向后向传播,更新参数,参数初始化,预测等

# -*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio


def sigmoid(x):
    """
    Compute the sigmoid of x
 
    Arguments:
    x -- A scalar or numpy array of any size.
 
    Return:
    s -- sigmoid(x)
    """
    s = 1 / (1 + np.exp(-x))
    return s


def relu(x):
    """
    Compute the relu of x
 
    Arguments:
    x -- A scalar or numpy array of any size.
 
    Return:
    s -- relu(x)
    """
    s = np.maximum(0, x)

    return s


def initialize_parameters(layer_dims):
    """
    Arguments:
    layer_dims -- python array (list) containing the dimensions of each layer in our network
    
    Returns:
    parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
                    W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
                    b1 -- bias vector of shape (layer_dims[l], 1)
                    Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l])
                    bl -- bias vector of shape (1, layer_dims[l])
                    
    Tips:
    - For example: the layer_dims for the "Planar Data classification model" would have been [2,2,1]. 
    This means W1's shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it!
    - In the for loop, use parameters['W' + str(l)] to access Wl, where l is the iterative integer.
    """

    np.random.seed(3)
    parameters = {}
    L = len(layer_dims)  # number of layers in the network

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) / np.sqrt(layer_dims[l - 1])
        parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))

        # assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1])
        # assert(parameters['W' + str(l)].shape == layer_dims[l], 1)

    return parameters


def forward_propagation(X, parameters):
    """
    Implements the forward propagation (and computes the loss) presented in Figure 2.
    
    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
                    W1 -- weight matrix of shape ()
                    b1 -- bias vector of shape ()
                    W2 -- weight matrix of shape ()
                    b2 -- bias vector of shape ()
                    W3 -- weight matrix of shape ()
                    b3 -- bias vector of shape ()
    
    Returns:
    loss -- the loss function (vanilla logistic loss)
    """

    # retrieve parameters
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    z1 = np.dot(W1, X) + b1
    a1 = relu(z1)
    z2 = np.dot(W2, a1) + b2
    a2 = relu(z2)
    z3 = np.dot(W3, a2) + b3
    a3 = sigmoid(z3)

    cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3)

    return a3, cache


def compute_cost(a3, Y):
    """
    Implement the cost function
    
    Arguments:
    a3 -- post-activation, output of forward propagation
    Y -- "true" labels vector, same shape as a3
    
    Returns:
    cost - value of the cost function
    """
    m = Y.shape[1]

    logprobs = np.multiply(-np.log(a3), Y) + np.multiply(-np.log(1 - a3), 1 - Y)
    cost = 1. / m * np.nansum(logprobs)

    return cost


def backward_propagation(X, Y, cache):
    """
    Implement the backward propagation presented in figure 2.
    
    Arguments:
    X -- input dataset, of shape (input size, number of examples)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    cache -- cache output from forward_propagation()
    
    Returns:
    gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
    """
    m = X.shape[1]
    (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) = cache

    dz3 = 1. / m * (a3 - Y)
    dW3 = np.dot(dz3, a2.T)
    db3 = np.sum(dz3, axis=1, keepdims=True)

    da2 = np.dot(W3.T, dz3)
    dz2 = np.multiply(da2, np.int64(a2 > 0))
    dW2 = np.dot(dz2, a1.T)
    db2 = np.sum(dz2, axis=1, keepdims=True)

    da1 = np.dot(W2.T, dz2)
    dz1 = np.multiply(da1, np.int64(a1 > 0))
    dW1 = np.dot(dz1, X.T)
    db1 = np.sum(dz1, axis=1, keepdims=True)

    gradients = {"dz3": dz3, "dW3": dW3, "db3": db3,
                 "da2": da2, "dz2": dz2, "dW2": dW2, "db2": db2,
                 "da1": da1, "dz1": dz1, "dW1": dW1, "db1": db1}

    return gradients


def update_parameters(parameters, grads, learning_rate):
    """
    Update parameters using gradient descent
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    grads -- python dictionary containing your gradients, output of n_model_backward
    
    Returns:
    parameters -- python dictionary containing your updated parameters 
                  parameters['W' + str(i)] = ... 
                  parameters['b' + str(i)] = ...
    """

    L = len(parameters) // 2  # number of layers in the neural networks

    # Update rule for each parameter
    for k in range(L):
        parameters["W" + str(k + 1)] = parameters["W" + str(k + 1)] - learning_rate * grads["dW" + str(k + 1)]
        parameters["b" + str(k + 1)] = parameters["b" + str(k + 1)] - learning_rate * grads["db" + str(k + 1)]

    return parameters


def load_2D_dataset(is_plot=True):
    data = sio.loadmat('datasets/data.mat')
    train_X = data['X'].T
    train_Y = data['y'].T
    test_X = data['Xval'].T
    test_Y = data['yval'].T
    if is_plot:
        plt.scatter(train_X[0, :], train_X[1, :], c=np.squeeze(train_Y), s=40, cmap=plt.cm.Spectral)
        plt.show()

    return train_X, train_Y, test_X, test_Y


def predict(X, y, parameters):
    """
    This function is used to predict the results of a  n-layer neural network.
    
    Arguments:
    X -- data set of examples you would like to label
    parameters -- parameters of the trained model
    
    Returns:
    p -- predictions for the given dataset X
    """

    m = X.shape[1]
    p = np.zeros((1, m), dtype=np.int)

    # Forward propagation
    a3, caches = forward_propagation(X, parameters)

    # convert probas to 0/1 predictions
    for i in range(0, a3.shape[1]):
        if a3[0, i] > 0.5:
            p[0, i] = 1
        else:
            p[0, i] = 0

    # print results
    print("Accuracy: " + str(np.mean((p[0, :] == y[0, :]))))

    return p


def plot_decision_boundary(model, X, y):
    # Set min and max values and give it some padding
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    h = 0.01
    # Generate a grid of points with distance h between them
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    # Predict the function value for the whole grid
    Z = model(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    # Plot the contour and training examples
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    plt.ylabel('x2')
    plt.xlabel('x1')
    plt.scatter(X[0, :], X[1, :], c=np.squeeze(y), cmap=plt.cm.Spectral)
    plt.show()


def predict_dec(parameters, X):
    """
    Used for plotting decision boundary.
    
    Arguments:
    parameters -- python dictionary containing your parameters 
    X -- input data of size (m, K)
    
    Returns
    predictions -- vector of predictions of our model (red: 0 / blue: 1)
    """

    # Predict using forward propagation and a classification threshold of 0.5
    a3, cache = forward_propagation(X, parameters)
    predictions = (a3 > 0.5)
    return predictions

1.2实现L2正则化和dropout的testCase

#!/usr/bin/env python
# _*_ coding:utf-8 _*_
import reg_utils
import numpy as np
import matplotlib.pyplot as plt

# 加载数据
train_X, train_Y, test_X, test_Y = reg_utils.load_2D_dataset()


# 定义模型
def model(X, Y, learning_rate=0.3, num_iterations=30000, print_cost=True, is_plot=True, lambd=0.0, keep_prob=1.):
    grads = {}
    costs = []
    m = X.shape[1]
    layer_dims = [X.shape[0], 20, 3, 1]
    # 初始化参数
    parameters = reg_utils.initialize_parameters(layer_dims)

    # 开始学习
    for i in range(num_iterations):
        # 向前传播
        if keep_prob == 1:
            a3, cache = reg_utils.forward_propagation(X, parameters)
        elif keep_prob < 1:
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
        else:
            print("keep_prob程序初始化错误!程序退出")
            exit
        # 计算成本
        # 是否使用二范数
        if lambd == 0:
            # 不适用L2正则化
            cost = reg_utils.compute_cost(a3, Y)
        else:
            # 使用L2正则化
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        # 反向传播
        # 可是同时使用L2正则化和随机删除节点,但是本次实验不同时使用
        assert (lambd == 0 or keep_prob == 1)

        if (lambd == 0 and keep_prob == 1):
            # 都不使用
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0:
            # 使用L2正则化
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            # 使用随机删除节点
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # 更新参数
        parameters = reg_utils.update_parameters(parameters, grads, learning_rate)

        # 记录并打印成本
        if i % 10000 == 0:
            costs.append(cost)
            if print_cost:
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    # 是否绘制成本曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations(x1000)')
        plt.title('Learning_rate:' + str(learning_rate))
        plt.show()

    return parameters


# 1.不使用正则化
# # 查看精确率
# parameters = model(train_X, train_Y)
# print("训练集")
# print(reg_utils.predict(train_X, train_Y, parameters))
# print("测试集")
# print(reg_utils.predict(test_X, test_Y, parameters))
# # 查看决策边界
# plt.title("Model without regularization")
# axes = plt.gca()
# axes.set_xlim([-0.75, 0.40])
# axes.set_ylim([-0.75, 0.65])
# reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)


# 2.使用正则化
# 2.1计算使用正则化的损失函数
def compute_cost_with_regularization(A3, Y, parameters, lambd):
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    W3 = parameters["W3"]
    # 交叉熵成本
    cross_entropy_cost = reg_utils.compute_cost(A3, Y)
    # 计算加上L2正则化成本
    L2_regularization_cost = lambd * (np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3))) / (2 * m)

    cost = cross_entropy_cost + L2_regularization_cost

    return cost


# 2.2计算L2正则化后向传播中求梯度函数
def backward_propagation_with_regularization(X, Y, cache, lambd):
    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
    dZ3 = A3 - Y

    dW3 = (1 / m) * np.dot(dZ3, A2.T) + ((lambd * W3) / m)
    db3 = (1 / m) * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = (1 / m) * np.dot(dZ2, A1.T) + ((lambd * W2) / m)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = (1 / m) * np.dot(dZ1, X.T) + ((lambd * W1) / m)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients


# 2.3跑正则化的模型
# parameters = model(train_X, train_Y, lambd=0.7, is_plot=True)
# print("使用正则化,训练集:")
# predictions_train = reg_utils.predict(train_X, train_Y, parameters)
# print("使用正则化,测试集:")
# predictions_test = reg_utils.predict(test_X, test_Y, parameters)
# # 查看分类结果
# plt.title('model with L2-regularization')
# axis=plt.gca()
# axis.set_xlim([-0.75,0.40])
# axis.set_ylim([-0.75,0.65])
# reg_utils.plot_decision_boundary(lambda x:reg_utils.predict_dec(parameters,x.T),train_X,train_Y)


# 3.使用反向dropout
# 3.1定义反向dropout的向前传播函数
def forward_propagation_with_dropout(X, parameters, keep_prob=0.5):
    np.random.seed(1)

    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    Z1 = np.dot(W1, X) + b1
    A1 = reg_utils.relu(Z1)

    D1 = np.random.rand(A1.shape[0], A1.shape[1])
    D1 = D1 < keep_prob
    A1 = A1 * D1
    A1 = A1/keep_prob

    Z2 = np.dot(W2, A1) + b2
    A2 = reg_utils.relu(Z2)

    D2 = np.random.rand(A2.shape[0], A2.shape[1])  #步骤1:初始化矩阵D2 = np.random.rand(..., ...)
    D2 = D2 < keep_prob                             #步骤2:将D2的值转换为0或1(使​​用keep_prob作为阈值)
    A2 = A2 * D2                                    #步骤3:舍弃A1的一些节点(将它的值变为0或False)
    A2 = A2 / keep_prob                             #步骤4:缩放未舍弃的节点(不为0)的值

    Z3 = np.dot(W3, A2) + b3
    A3 = reg_utils.sigmoid(Z3)

    cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)
    return A3,cache


# 3.2定义反向dropout的反向传播函数
def backward_propagation_with_dropout(X, Y, cache, keep_prob):
    m = X.shape[1]
    (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache
    dZ3 = A3 - Y
    dW3 = (1. / m) * np.dot(dZ3, A2.T)
    db3 = (1. / m) * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dA2 = dA2 * D2
    dA2 /= keep_prob

    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = (1. / m) * np.dot(dZ2, A1.T)
    db2 = (1. / m) * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dA1 = dA1 * D1
    dA1 /= keep_prob

    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = (1. / m) * np.dot(dZ1, X.T)
    db1 = (1. / m) * np.sum(dZ1, axis=1, keepdims=True)
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}
    return gradients


# 3.3跑后向dropout的模型,可以看到训练集的准确率降低但是测试集的准确率增大了
parameters=model(train_X,train_Y,keep_prob=0.86,)
print("随机删除节点,训练集")
print(reg_utils.predict(train_X,train_Y,parameters))
print("随机删除节点,测试集")
print(reg_utils.predict(test_X,test_Y,parameters))

# 查看分类情况
plt.title("model with dropout")
axis=plt.gca()
axis.set_xlim([-0.75, 0.40])
axis.set_ylim([-0.75, 0.65])
reg_utils.plot_decision_boundary(lambda x:reg_utils.predict_dec(parameters,x.T),train_X,train_Y)

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值