1.编程实现,神经网络传播中的三种初始化参数的方法
2.编程实现神经网络中的L2正则化,dropout正则化,
3.编程实现梯度检验
任务1:三种初始化参数的方式
1.1初始化的工具类:实现函数定义,前向和后向传播以及决策边界,预测函数等
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
def sigmoid(x):
"""
Compute the sigmoid of x
Arguments:
x -- A scalar or numpy array of any size.
Return:
s -- sigmoid(x)
"""
s = 1 / (1 + np.exp(-x))
return s
def relu(x):
"""
Compute the relu of x
Arguments:
x -- A scalar or numpy array of any size.
Return:
s -- relu(x)
"""
s = np.maximum(0, x)
return s
def compute_loss(a3, Y):
"""
Implement the loss function
Arguments:
a3 -- post-activation, output of forward propagation
Y -- "true" labels vector, same shape as a3
Returns:
loss - value of the loss function
"""
m = Y.shape[1]
logprobs = np.multiply(-np.log(a3), Y) + np.multiply(-np.log(1 - a3), 1 - Y)
loss = 1. / m * np.nansum(logprobs)
return loss
def forward_propagation(X, parameters):
"""
Implements the forward propagation (and computes the loss) presented in Figure 2.
Arguments:
X -- input dataset, of shape (input size, number of examples)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
W1 -- weight matrix of shape ()
b1 -- bias vector of shape ()
W2 -- weight matrix of shape ()
b2 -- bias vector of shape ()
W3 -- weight matrix of shape ()
b3 -- bias vector of shape ()
Returns:
loss -- the loss function (vanilla logistic loss)
"""
# retrieve parameters
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
W3 = parameters["W3"]
b3 = parameters["b3"]
# LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
z1 = np.dot(W1, X) + b1
a1 = relu(z1)
z2 = np.dot(W2, a1) + b2
a2 = relu(z2)
z3 = np.dot(W3, a2) + b3
a3 = sigmoid(z3)
cache = (z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3)
return a3, cache
def backward_propagation(X, Y, cache):
"""
Implement the backward propagation presented in figure 2.
Arguments:
X -- input dataset, of shape (input size, number of examples)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
cache -- cache output from forward_propagation()
Returns:
gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
"""
m = X.shape[1]
(z1, a1, W1, b1, z2, a2, W2, b2, z3, a3, W3, b3) = cache
dz3 = 1. / m * (a3 - Y)
dW3 = np.dot(dz3, a2.T)
db3 = np.sum(dz3, axis=1, keepdims=True)
da2 = np.dot(W3.T, dz3)
dz2 = np.multiply(da2, np.int64(a2 > 0))
dW2 = np.dot(dz2, a1.T)
db2 = np.sum(dz2, axis=1, keepdims=True)
da1 = np.dot(W2.T, dz2)
dz1 = np.multiply(da1, np.int64(a1 > 0))
dW1 = np.dot(dz1, X.T)
db1 = np.sum(dz1, axis=1, keepdims=True)
gradients = {"dz3": dz3, "dW3": dW3, "db3": db3,
"da2": da2, "dz2": dz2, "dW2": dW2, "db2": db2,
"da1": da1, "dz1": dz1, "dW1": dW1, "db1": db1}
return gradients
def update_parameters(parameters, grads, learning_rate):
"""
Update parameters using gradient descent
Arguments:
parameters -- python dictionary containing your parameters
grads -- python dictionary containing your gradients, output of n_model_backward
Returns:
parameters -- python dictionary containing your updated parameters
parameters['W' + str(i)] = ...
parameters['b' + str(i)] = ...
"""
L = len(parameters) // 2 # number of layers in the neural networks
# Update rule for each parameter
for k in range(L):
parameters["W" + str(k + 1)] = parameters["W" + str(k + 1)] - learning_rate * grads["dW" + str(k + 1)]
parameters["b" + str(k + 1)] = parameters["b" + str(k + 1)] - learning_rate * grads["db" + str(k + 1)]
return parameters
def predict(X, y, parameters):
"""
This function is used to predict the results of a n-layer neural network.
Arguments:
X -- data set of examples you would like to label
parameters -- parameters of the trained model
Returns:
p -- predictions for the given dataset X
"""
m = X.shape[1]
p = np.zeros((1, m), dtype=np.int)
# Forward propagation
a3, caches = forward_propagation(X, parameters)
# convert probas to 0/1 predictions
for i in range(0, a3.shape[1]):
if a3[0, i] > 0.5:
p[0, i] = 1
else:
p[0, i] = 0
# print results
print("Accuracy: " + str(np.mean((p[0, :] == y[0, :]))))
return p
def load_dataset(is_plot=True):
np.random.seed(1)
train_X, train_Y = sklearn.datasets.make_circles(n_samples=300, noise=.05)
np.random.seed(2)
test_X, test_Y = sklearn.datasets.make_circles(n_samples=100, noise=.05)
# Visualize the data
if is_plot:
plt.scatter(train_X[:, 0], train_X[:, 1], c=train_Y, s=40, cmap=plt.cm.Spectral)
plt.show()
train_X = train_X.T
train_Y = train_Y.reshape((1, train_Y.shape[0]))
test_X = test_X.T
test_Y = test_Y.reshape((1, test_Y.shape[0]))
return train_X, train_Y, test_X, test_Y
def plot_decision_boundary(model, X, y):
# Set min and max values and give it some padding
x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
h = 0.01
# Generate a grid of points with distance h between them
# 415行 422列
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole grid
# (175120,)行,1列
x1=xx.ravel()
y1=yy.ravel()
# 175120行,2列,创建数据点,每一行代表一个数据点的坐标,列代表数据点的个数
xy1=np.c_[x1, y1]
# 415行 422列
Z = model(xy1)
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel('x2')
plt.xlabel('x1')
y = np.squeeze(y)
plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
plt.show()
def predict_dec(parameters, X):
"""
Used for plotting decision boundary.
Arguments:
parameters -- python dictionary containing your parameters
X -- input data of size (m, K)
Returns
predictions -- vector of predictions of our model (red: 0 / blue: 1)
"""
# Predict using forward propagation and a classification threshold of 0.5
a3, cache = forward_propagation(X, parameters)
predictions = (a3 > 0.5)
return predictions
1.2实现初始化的testCase,实现model函数的定义,以及实现三种初始化的方式
#!/usr/bin/env python
# _*_ coding:utf-8 _*_
import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import init_utils # 第一部分初始化
import reg_utils # 第二部分正则化
import gc_utils # 第三部分梯度校验
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
# 1.读取并绘制数据
train_X, train_Y, test_X, test_Y = init_utils.load_dataset(True)
# 2.以3中方式初始化参数w
# 2.1全部初始化为0;2.2随机初始化;2.3以he方式初始化
def model(X, Y, learning_rate=0.01, num_iterations=15000, print_cost=True, initialization="he", is_polt=True):
grads = {}
costs = []
m = X.shape[1]
layers_dims = [X.shape[0], 10, 5, 1]
# 选择初始化的类型
if initialization == "zeros":
parameters = initialize_parameters_zeros(layers_dims)
elif initialization == "random":
parameters = initialize_parameters_random(layers_dims)
elif initialization == "he":
parameters = initialize_parameters_he(layers_dims)
else:
print("错误的初始化参数!程序退出")
exit
# 开始学习
for i in range(0, num_iterations):
# 前向计算
a3, cache = init_utils.forward_propagation(X, parameters)
# 计算损失函数
cost = init_utils.compute_loss(a3, Y)
# 反向传播
grads = init_utils.backward_propagation(X, Y, cache)
# 更新参数
parameters = init_utils.update_parameters(parameters, grads, learning_rate)
if i % 1000 == 0:
costs.append(cost)
if print_cost:
print("第" + str(i) + "次的成本为:" + str(cost))
return parameters
# 2.1定义初始化为0的w
def initialize_parameters_zeros(layers_dims):
parameters = {}
L = len(layers_dims)
for i in range(1, L):
parameters["W" + str(i)] = np.zeros((layers_dims[i], layers_dims[i - 1]))
parameters["b" + str(i)] = np.zeros((layers_dims[i], 1))
return parameters
# 测试初始化为0的w
# parameters = model(train_X, train_Y, initialization="zeros", is_polt=True)
# # 根据参数进行预测
#
# accury = init_utils.predict(train_X, train_Y, parameters)
# # print("训练集:"+str(accury))
#
# accury = init_utils.predict(test_X, test_Y, parameters)
# # print("测试集:"+str(accury))
#
# # 预测和决策边界
#
# plt.title("Model with Zeros initialization")
# axis = plt.gca()
# axis.set_xlim([-1.5, 1.5])
# axis.set_ylim([-1.5, 1.5])
# # 决策边界中划分的所有的数据都是一个颜色,即划分为了同一类
# init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)
#
# 2.2定义随机初始化的w
def initialize_parameters_random(layers_dims):
np.random.seed(3)
parameters = {}
L = len(layers_dims)
for i in range(1, L):
parameters["W" + str(i)] = np.random.randn(layers_dims[i], layers_dims[i - 1]) * 10 # 10倍缩放
parameters["b" + str(i)] = np.zeros((layers_dims[i], 1))
return parameters
# 测试初始化为随机的w和b的值
# parameters = initialize_parameters_random([3, 2, 1])
# print("W1 = " + str(parameters["W1"]))
# print("b1 = " + str(parameters["b1"]))
# print("W2 = " + str(parameters["W2"]))
# print("b2 = " + str(parameters["b2"]))
# 用初始化的参数进行训练
# parameters=model(train_X,train_Y,initialization='random')
# print('训练集')
# print(init_utils.predict(train_X,train_Y,parameters))
# print("测试集")
# print(init_utils.predict(test_X,test_Y,parameters))
#
# # 绘制图查看分类的结果
# plt.title("Model with large random initialization")
# axes = plt.gca()
# axes.set_xlim([-1.5, 1.5])
# axes.set_ylim([-1.5, 1.5])
# init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)
# 2.3定义抑梯度异常初始化的w,比随机初始化的参数要小一些,接近于1
def initialize_parameters_he(layers_dims):
np.random.seed(3)
parameters = {}
L = len(layers_dims)
for i in range(1, L):
parameters["W" + str(i)] = np.random.randn(layers_dims[i], layers_dims[i - 1]) * np.sqrt(2 / layers_dims[i - 1])
parameters["b" + str(i)] = np.zeros((layers_dims[i], 1))
return parameters
# 测试初始化为随机的w
# 用初始化的参数进行训练
parameters = model(train_X, train_Y, initialization='he')
print('训练集')
print(init_utils.predict(train_X, train_Y, parameters))
print("测试集")
print(init_utils.predict(test_X, test_Y, parameters))
# 绘制图查看分类的结果
plt.title("Model with large random initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])
init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)