取子问题:
如果n%(m+1)为0,那么后手赢,如果n%(m+1)!=0,那么先手赢。
考虑到只剩m+1个棋子的时候,这个时候谁取谁输。
所以
如果n%(m+1)为0,那么先手至少取了1个,后手可以对应的取,使得剩下棋子数保持n%(m+1)=0,这样下去,先手一定会面临在m+1个棋子中取子的问题,先手必输。
如果n%(m+1)!=0,那么先手可以先行取子,使得剩余的棋子保持n%(m+1)=0,这样后手无论怎么取,先手都可以调整取子,使得n%(m+1)=0,这样就可以保证先手必赢。
100本书,每个人最少拿一本,最多拿五本,我先拿,怎么保证最后一本是我拿的?
答案:我先拿4本,当对方拿n本的时候,我拿6-n本,保证每一次我拿完之后剩下的本数是6的倍数。
现在牛牛和牛妹一起出去海滩游玩,由于他们两个都不会游泳,所以他们在海滩捡了很多好看的贝壳,可是捡着捡着他们就感觉无聊了,所以他们决定拿这些贝壳玩一些游戏。
他们一共捡了n个贝壳,现在他们这n个贝壳放成一堆。然后轮流取贝壳,牛牛先取。牛牛一次能取[1,p]个贝壳,牛妹一次能取[1,q]个贝壳,能拿到最后一个贝壳的人赢
问牛牛和牛妹都足够聪明的情况下,最后谁能取得胜利
如果牛牛必胜,返回1
如果牛妹必胜,返回-1
如果没有人有必胜策略,返回0
class Solution {
public:
/**
*
* @param n int整型
* @param p int整型
* @param q int整型
* @return int整型
*/
int Gameresults(int n, int p, int q) {
// write code here
if(p == q){
if(n % (p + 1) == 0) return -1;
else return 1;
}
if(p >= n || p > q) return 1;
return -1;
}
};