取子问题 两个人怎么保证先走的赢

取子问题:

如果n%(m+1)为0,那么后手赢,如果n%(m+1)!=0,那么先手赢。

考虑到只剩m+1个棋子的时候,这个时候谁取谁输。

  所以

  如果n%(m+1)为0,那么先手至少取了1个,后手可以对应的取,使得剩下棋子数保持n%(m+1)=0,这样下去,先手一定会面临在m+1个棋子中取子的问题,先手必输。

  如果n%(m+1)!=0,那么先手可以先行取子,使得剩余的棋子保持n%(m+1)=0,这样后手无论怎么取,先手都可以调整取子,使得n%(m+1)=0,这样就可以保证先手必赢。

 

100本书,每个人最少拿一本,最多拿五本,我先拿,怎么保证最后一本是我拿的?

答案:我先拿4本,当对方拿n本的时候,我拿6-n本,保证每一次我拿完之后剩下的本数是6的倍数。

现在牛牛和牛妹一起出去海滩游玩,由于他们两个都不会游泳,所以他们在海滩捡了很多好看的贝壳,可是捡着捡着他们就感觉无聊了,所以他们决定拿这些贝壳玩一些游戏。

他们一共捡了n个贝壳,现在他们这n个贝壳放成一堆。然后轮流取贝壳,牛牛先取。牛牛一次能取[1,p]个贝壳,牛妹一次能取[1,q]个贝壳,能拿到最后一个贝壳的人赢

问牛牛和牛妹都足够聪明的情况下,最后谁能取得胜利

如果牛牛必胜,返回1

如果牛妹必胜,返回-1

如果没有人有必胜策略,返回0

 

class Solution {
public:
    /**
     * 
     * @param n int整型 
     * @param p int整型 
     * @param q int整型 
     * @return int整型
     */
    int Gameresults(int n, int p, int q) {
        // write code here
        if(p == q){
            if(n % (p + 1) == 0) return -1;
            else return 1;
        }
        if(p >= n || p > q) return 1;
        return -1;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樱桃木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值