
DataScience
基于机器学习和深度学习算法的数据科学
一个处女座的程序猿
人工智能硕博生,目前兼职国内外多家头部人工智能公司的AI技术顾问。拥有十多项发明专利(6项)和软件著作权(9项),多个国家级证书(2个国三级、3个国四级),先后获得国内外“人工智能算法”竞赛(包括国家级、省市级等,一等奖5项、二等奖4项、三等奖2项)相关证书十多个,以上均以第一作者身份,并拥有省市校级个人荣誉证书十多项。正在撰写《人工智算法最新实战》一书,目前已37万字。
-
原创 ML之FE:基于自定义数据集(银行客户信息贷款和赔偿)对比实现特征衍生(手动设计新特征、利用featuretools工具实现自动特征生成)
ML之FE:基于自定义数据集(银行客户信息贷款和赔偿)对比实现特征衍生(手动设计新特征、利用featuretools工具实现自动特征生成)目录基于自定义数据集(银行客户信息贷款和赔偿)对比实现特征衍生(T1手动设计新特征、T2利用featuretools工具实现自动特征生成)设计思路输出结果T1、手动设计新特征T2、利用featuretools工具实现自动特征生成T2.1、79个Feature PrimitivesT2.2、深度特征合成:指通过叠加多个基元来得到特征2021-01-07 23:03:36597
1
-
原创 ML之FE:基于BigMartSales数据集利用Featuretools工具实现自动特征工程之详细攻略
ML之FE:基于BigMartSales数据集利用Featuretools工具实现自动特征工程之详细攻略目录基于BigMartSales数据集利用Featuretools工具实现自动特征工程设计思路输出结果核心代码基于BigMartSales数据集利用Featuretools工具实现自动特征工程设计思路更新……输出结果train.shape: (500, 12)test.shape: (200, 11)...2020-12-28 23:53:161702
0
-
原创 ML之FE:特征工程之数据处理常用案例总结(数值型数据处理、类别型数据处理)及其代码实现
ML之FE:特征工程之数据处理常用案例总结(数值型数据处理、类别型数据处理)及其代码实现目录特征工程之数据处理常用案例总结(数值型数据处理、类别型数据处理)及其代码实现数值型数据处理(1)、当某列所有数据中50%的分位数为负数的时候,符号取反(2)、对数值型数据进行分箱(3)、对数值型数据特征进行类别化(4)、一行代码(利用apply函数)实现对pandas.dataframe某一列所有数据执行某一函数功能类别型数据处理特征工程之数据处理常用案例总结2020-12-24 22:55:471477
0
-
原创 ML之FE:特征工程处理中常用的数据变换(log取对数变换等)之详细攻略
ML之FE:特征工程处理中常用的数据变换(log取对数变换等)之详细攻略目录特征工程处理中常用的数据变换(log取对数变换等)之详细攻略log取对数变换特征工程处理中常用的数据变换(log取对数变换等)之详细攻略log取对数变换意义:取对数之后不会改变数据的性质和相关关系,但压缩了变量的尺度。让方差恒定,即让波动相对稳定,消除异方差问题。import numpy as npimport pandas as pdarray_data=n...2020-12-23 00:01:091505
0
-
原创 ML之LightGBM:基于titanic数据集利用LightGBM和shap算法实现数据特征的可解释性(量化特征对模型贡献度得分)
ML之LightGBM:基于titanic数据集利用LightGBM和shap算法实现数据特征的可解释性(量化特征对模型贡献度得分)目录基于titanic数据集利用LightGBM和shap算法实现数据特征的可解释性(量化特征对模型贡献度得分)设计思路输出结果核心代码基于titanic数据集利用LightGBM和shap算法实现数据特征的可解释性(量化特征对模型贡献度得分)设计思路更新……输出结果...2020-12-11 00:11:542496
0
-
原创 DL之GD:利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分类预测(超平面可视化)
DL之GD:利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分类预测(超平面可视化)目录利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分类预测(超平面可视化)设计思路输出结果核心代码利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分类预测(超平面可视化)设计思路后期更新……输出结果...2020-12-03 23:37:402833
0
-
原创 ML之kNNC:基于iris莺尾花数据集(PCA处理+三维散点图可视化)利用kNN算法实现分类预测
ML之kNNC:基于iris莺尾花数据集(PCA处理+三维散点图可视化)利用kNN算法实现分类预测目录基于iris莺尾花数据集(PCA处理+三维散点图可视化)利用kNN算法实现分类预测设计思路输出结果核心代码基于iris莺尾花数据集(PCA处理+三维散点图可视化)利用kNN算法实现分类预测设计思路更新……输出结果(149, 5) 5.1 3.5 1.4 0.2 Iris-seto...2020-11-27 22:50:512846
0
-
原创 ML之KMeans:利用KMeans算法对Boston房价数据集(两特征+归一化)进行二聚类分析
ML之KMeans:利用KMeans算法对Boston房价数据集(两特征+归一化)进行二聚类分析目录利用KMeans算法对Boston房价数据集(两特征+归一化)进行二聚类分析设计思路输出结果核心代码利用KMeans算法对Boston房价数据集(两特征+归一化)进行二聚类分析设计思路更新……输出结果train_boston_data.shape (1460, 81) Id MSSubClass ...2020-11-26 23:36:383519
1
-
原创 ML之LiR:利用LiR线性回归算法(自定义目标函数MSE和优化器GD)对Boston房价数据集(两特征+归一化)进行回归预测
ML之LiR:利用LiR线性回归算法(自定义目标函数MSE和优化器GD)对Boston房价数据集(两特征+归一化)进行回归预测目录利用LiR线性回归算法(自定义目标函数MSE和优化器GD)对Boston房价数据集(两特征+归一化)进行回归预测设计思路输出结果核心代码利用LiR线性回归算法(自定义目标函数MSE和优化器GD)对Boston房价数据集(两特征+归一化)进行回归预测设计思路更新……输出结果...2020-11-26 23:27:302979
0
-
原创 ML之LassoR&RidgeR:基于datasets糖尿病数据集利用LassoR和RidgeR算法(alpha调参)进行(9→1)回归预测
ML之LassoR&RidgeR:基于datasets糖尿病数据集利用LassoR和RidgeR算法(alpha调参)进行(9→1)回归预测目录基于datasets糖尿病数据集利用LassoR和RidgeR算法(alpha调参)进行(9→1)回归预测设计思路输出结果核心代码相关文章ML之LassoR&RidgeR:基于datasets糖尿病数据集利用LassoR和RidgeR算法(alpha调参)进行(9→1)回归预测ML之Lasso...2020-11-26 22:50:553256
0
-
原创 ML之LiR&LassoR:利用boston房价数据集(PCA处理)采用线性回归和Lasso套索回归算法实现房价预测模型评估
ML之LiR&LassoR:利用boston房价数据集(PCA处理)采用线性回归和Lasso套索回归算法实现房价预测模型评估目录利用boston房价数据集(PCA处理)采用线性回归和Lasso套索回归算法实现房价预测模型评估设计思路输出结果核心代码利用boston房价数据集(PCA处理)采用线性回归和Lasso套索回归算法实现房价预测模型评估设计思路更新……输出结果 Id MSSubCl...2020-11-25 23:29:072972
0
-
原创 ML之LiR&Lasso:基于datasets糖尿病数据集利用LiR和Lasso算法进行(9→1)回归预测(三维图散点图可视化)
ML之LiR&Lasso:基于datasets糖尿病数据集利用LiR和Lasso算法进行(9→1)回归预测(三维图散点图可视化)目录基于datasets糖尿病数据集利用LiR和Lasso算法进行(9→1)回归预测(三维图散点图可视化)设计思路输出结果Lasso核心代码基于datasets糖尿病数据集利用LiR和Lasso算法进行(9→1)回归预测(三维图散点图可视化)设计思路输出结果Las...2020-11-24 23:48:454701
2
-
原创 Python:数据类型转换之将Scikit-learn的Bunch数据类型转换为Pandas的DataFrame类型案例及代码实现
Python:数据类型转换之将Scikit-learn的Bunch数据类型转换为Pandas的DataFrame类型案例及代码实现目录数据类型转换之将Scikit-learn的Bunch数据类型转换为Pandas的DataFrame类型案例及代码实现Scikit-learn的Bunch数据类型简介1、diabetes_dataset数据集简介代码实现数据类型转换之将Scikit-learn的Bunch数据类型转换为Pandas的Data...2020-11-24 22:15:141412
0
-
原创 Python之Pandas:pandas.read_csv()函数的简介、具体案例、使用方法详细攻略
Python之Pandas:pandas.read_csv()函数的简介、具体案例、使用方法详细攻略目录read_csv()函数的简介read_csv()函数的简介pd.read_csv('data.csv') pandas.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squee...2020-10-13 20:59:531645
0
-
原创 ML之FE:利用【数据分析+数据处理】算法对国内某平台上海2020年6月份房价数据集【12+1】进行特征工程处理(史上最完整,建议收藏)——附录
ML之FE:利用【数据分析+数据处理】算法对国内某平台2020年6月份房价数据集【12+1】进行特征工程处理(史上最完整,建议收藏)——附录附录依次返回数值型、类别型字段、 ['age', 'area_Num', 'unit_price_Num', 'total_price_Num'] ['total_price', 'unit_price', 'roomtype', 'height', 'direction', 'decorate', 'area', 'garden',...2020-09-11 21:14:003554
0
-
原创 ML之FE:利用【数据分析+数据处理】算法对国内某平台上海2020年6月份房价数据集【12+1】进行特征工程处理(史上最完整,建议收藏)
ML之FE:利用【数据分析+数据处理】算法对国内某平台上海2020年6月份房价数据集【12+1】进行特征工程处理(史上最完整,建议收藏)目录利用【数据分析+数据处理】算法对链家房价数据集【12+1】进行特征工程处理1、数据集信息输出1.1、输出基本信息1.2、单独统计目标变量差异1.3、分析缺失数据1.4、区分数值型、类别型字段2、特征工程2.1、数据分析之单变量统计可视化分析2.2、根据某列Column_others的不同类别进行分组,统计组内Column2020-09-11 21:09:584831
0
-
原创 ML之FE:特征工程中常用的五大数据集划分方法(留1法/留p法、随机划分法、K折交叉验证法、自定义分割法、特殊类型数据分割法、自助采样法)讲解及其代码
ML之FE:特征工程中常用的五大数据集划分方法(留1法/留p法、随机划分法、K折交叉验证法、自定义分割法、特殊类型数据分割法、自助采样法)讲解及其代码导读:将整个数据集D划分为三个互斥的集合{训练集、验证集和测试集}。在对数据集进行划分时,目前最常用的思路,是要尽可能保持数据分布的一致性,避免因数据划分过程引入额外的偏差而对最终结果产生影响。例如在分类任务中至少要保持样本的类别比例相似。因此通常使用分层采样(stratified sampling)划分数据以保留类别比例,比如带Stratified2020-09-07 18:59:033654
2
-
原创 ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)
ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)目录利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)数据说明输出结果查看数据分布分析数据输出训练过程导出推理结果相关文章ML之RF:利用Pipeline(客户年龄/职业/婚姻/教育/违约/余额/住房等)预测客户是否购买该银行的产品二分类(预测、推理)2020-08-28 22:15:102435
0
-
原创 BigData之Storm:Apache Storm的简介、深入理解、下载、案例应用之详细攻略
BigData之Storm:Apache Storm的简介、深入理解、下载、案例应用之详细攻略目录Apache Storm的简介Apache Storm的深入理解1、Storm与hadoop2、Apache Storm的APIApache Storm的下载Current 2.2.x ReleaseApache Storm的案例应用1、Apache Storm集成Apache Storm的简介 Apache Storm是一个免费的2018-05-16 20:10:5610823
4
-
原创 Excel:Excel使用技巧经验总结之(利用Excel自带功能统计各个字段不同类别及其个数并进行图表可视化+非编程实现)图文教程之详细攻略
Excel:Excel使用技巧经验总结之(利用Excel自带功能统计各个字段不同类别及其个数并进行图表可视化+非编程实现)图文教程之详细攻略目录利用Excel自带筛选功能统计各个字段不同类别及其个数并进行图表可视化1、选中数据2、选中筛选功能3、对筛选功能进一步设置利用Excel自带筛选功能统计各个字段不同类别及其个数并进行图表可视化1、选中数据2、选中筛选功能3、对筛选功能进一步设置2020-08-24 23:09:272414
0
-
原创 Excel:python结合Excel使用技巧经验总结之(将pandas.DataFrame格式数据存为表格内等)图文教程之详细攻略
Excel:python结合Excel使用技巧经验总结之(将pandas.DataFrame格式数据存为表格内等)图文教程之详细攻略目录Excel使用技巧经验总结将pandas.DataFrame格式数据存为表格内T1、采用pandas自带的导出函数功能,直接另存到表格内T2、直接粘贴复制Excel使用技巧经验总结将pandas.DataFrame格式数据存为表格内T1、采用pandas自带的导出函数功能,直接另存到表格内本...2020-08-24 22:54:151142
0
-
原创 Database之SQLSever:SQLSever基础知识进阶、软件安装注意事项、软件使用经验总结之详细攻略
Database之SQLSever:SQLSever基础知识进阶、软件安装注意事项、软件使用经验总结之详细攻略目录SQLSever基础知识进阶数据库相关基本概念主键/外键、标识符、通配符、数据类型以及数据类型转换函数主键/外键标识符、通配符数据类型以及数据类型转换函数软件安装注意事项SQLSever软件认知软件安装及其注意事项1、登录时的两种方法进行身份验证软件使用经验总结1、以按钮为导向2、对象资源管理器2.1、利用分离、附加某个数据库实2020-07-26 11:00:312902
0
-
原创 Database:Database数据库的简介、类型及其区别(关系数据库VS非关系型数据库)、案例应用之详细攻略
Database:Database数据库的简介、类型及其区别(关系数据库VS非关系型数据库)、案例应用之详细攻略目录Database数据库的简介1、数据库的发展历史:80年代以来的关系型数据库→基于分布式技术云计算和大数据时代的非关系型数据Database数据库的类型1、关系数据库——Mysql、Oracle、SQLServer、Mysql、DB21.1、 数据库的常用的增删改查四种操作:SELECT、INSERT、UPDATE、DELETE2、非关系型数据库(NoSQL2020-07-26 09:35:173827
1
-
原创 ML之LoR:利用信用卡数据集(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估)进行是否欺诈二分类
ML之LoR:利用布鲁塞尔的creditcard数据集进行采样处理(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估)进行是否欺诈二分类目录利用布鲁塞尔的creditcard数据集进行采样处理(欠采样{Nearmiss/Kmeans/TomekLinks/ENN}、过采样{SMOTE/ADASYN})同时采用LoR算法(PR和ROC评估)进行是否欺诈二分类输出结果实现代码...2020-07-21 23:10:233288
0
-
原创 DataScience:对严重不均衡数据集进行多种采样策略(随机过抽样、SMOTE过采样、SMOTETomek综合采样、改变样本权重等)简介、经验总结之详细攻略
DataScience:对严重不均衡数据集进行多种采样策略(随机过抽样、SMOTE过采样、SMOTETomek综合采样、改变样本权重等)简介、经验总结之详细攻略目录对严重不均衡数据集进行多种采样策略(随机过抽样、SMOTE过采样、SMOTETomek综合采样、改变样本权重)之详细攻略过采样随机过采样SMOTE过采样欠采样Tomek Link法欠采样SMOTE过采样+TomekLink数据加权——可理解为欠采样集成方法代价敏感方法一分类经验总结2020-07-21 22:29:532942
0
-
原创 ML之FE:对爬取的某平台二手房数据进行数据分析以及特征工程处理
ML之FE:对爬取的某平台二手房数据进行数据分析以及特征工程处理目录对爬取的某平台二手房数据进行数据分析以及特征工程处理1、定义数据集2、特征工程(数据分析+数据处理)对爬取的某平台二手房数据进行数据分析以及特征工程处理1、定义数据集<class 'pandas.core.frame.DataFrame'> total_price unit_price roomtype height direction decorate ...2020-07-13 23:01:243642
0
-
原创 DataScience:初学者进阶数学处理专家,学会Excel中50个常用功能带你飞
DataScience:初学者进阶数学处理专家,学会Excel中50个常用功能带你飞目录初学者进阶数学处理专家,学会Excel中50个常用功能带你飞1、自动筛选2、在Excel中字符替换3、在Excel中冻结行列标题4、在Excel中为导入外部数据5、在Excel中行列快速转换6、共享Excel工作簿7、在Excel中添加说明文字8、在Excel中数据分列整理9、在Excel中数据合并10、在Excel中添...2020-07-10 18:46:153468
0
-
原创 Crawl:利用bs4和requests爬取了国内顶级某房源平台(2020年7月2日上海二手房)将近30*100多条数据并进行房价分析以及预测
Crawl:利用bs4和requests爬取了国内顶级某房源平台(上海二手房)将近30*100多条数据并进行房价分析以及预测目录利用bs4和requests爬取了国内顶级某房源平台(上海二手房)将近30*100多条数据并进行房价分析以及预测数据爬取房价分析与预测利用bs4和requests爬取了国内顶级某房源平台(上海二手房)将近30*100多条数据并进行房价分析以及预测数据爬取房价分析与预测...2020-07-02 13:35:481545
0
-
原创 DataScience:数据可视化的简介(意义+六大优势)、使用工具之详细攻略
DataScience:数据可视化的简介(重要性+意义)、使用工具之详细攻略目录数据可视化的重要性及其意义1、为什么需要数据可视化?2、数据可视化三大意义数据可视化常用工具1、Excel—最常用、静态化、不适合大量数据2、DataFocus—受欢迎、自动更新3、Tableau—复杂的数据分析、高贵4、编程语言实现自动可视化—学习成本高、适合数据科学...2020-04-14 12:20:1713556
0
-
原创 ML之FE:特征工程中常用的一些处理手段(缺失值填充、异常值检测等)及其对应的底层代码的实现
ML之FE:特征工程中常用的一些处理手段(缺失值填充、异常值检测等)及其对应的底层代码的实现目录特征工程中常用的一些处理手段(缺失值填充、异常值检测等)及其对应的底层代码的实现缺失值填充fillna(self, value=None, method=None, axis=None,inplace=False,limit=None, downcast=None, *...2020-04-07 22:11:402822
0
-
原创 ML之LGBMRegressor(Competition):2018年全国大学生计算机技能应用大赛《住房月租金预测大数据赛》——设计思路以及核心代码—191017再次更新
ML之LGBMRegressor(Competition):2018年全国大学生计算机技能应用大赛《住房月租金预测大数据赛》——设计思路以及核心代码—191017再次更新目录竞赛相关信息数据集处理前后输出结果设计思路核心代码相关文章竞赛相关信息竞赛背景: 为贯彻关于“推动互联网、大数据、人工智能和实体经济深度融合”以及“...2019-10-17 17:47:0714511
1
-
原创 NPMCM:2016年全国研究生数学建模竞赛A题:多无人机协同任务规划—包括全国研究生数学建模竞赛(NPMCM)历年试题
NPMCM:2016年全国研究生数学建模竞赛A题:多无人机协同任务规划目录多无人机协同任务规划论文全国研究生数学建模竞赛(NPMCM)历年试题数模知识库全国大学生数学建模竞赛(CUMCM)全国研究生数学建模竞赛(NPMCM)美国大学生数学建模竞赛(MCM、ICM)数模论文库数模题库数模书库网站导航多无人机协同任务规划论文...2018-09-12 21:32:1812038
0
-
原创 CUMCM之2006B:2006之B题: 艾滋病疗法的评价及疗效的预测
CUMCM之2006B:2006之B题: 艾滋病疗法的评价及疗效的预测目录2006高教社杯全国大学生数学建模竞赛题目2006之B题: 艾滋病疗法的评价及疗效的预测2006高教社杯全国大学生数学建模竞赛题目2006之B题: 艾滋病疗法的评价及疗效的预测...2018-09-07 14:38:3110179
0
-
原创 FE之DR之线性降维:PCA/白化、LDA算法的数学知识(协方差矩阵)、相关论文、算法骤、代码实现、案例应用等相关配图之详细攻略
FE之DR之线性降维:PCA/白化、LDA算法的数学知识(协方差矩阵)、相关论文、算法骤、代码实现、案例应用等相关配图之详细攻略目录PCA1、PCA的数学知识1、协方差矩阵计算2、PCA算法相关论文3、PCA算法三步骤第一步,计算矩阵 X的样本的协方差矩阵S第二步,计算协方差矩阵C的特征向量和特征值第三步,投影数据到特征向量张成的空间之中4、PC...2018-11-08 19:55:5810334
0
-
原创 DataScience:深入探讨与分析机器学习中的数据处理之非线性变换—log对数变换、sigmoid/softmax变换
DataScience:深入探讨与分析机器学习中的数据处理之非线性变换—log对数变换、sigmoid/softmax变换目录深入探讨与分析机器学习中的数据处理之非线性变换log对数变换sigmoid/softmax变换Sigmoid函数Softmax函数深入探讨与分析机器学习中的数据处理之非线性变换log对数变换 ...2020-03-19 13:50:042361
0
-
原创 DataScience:深入探讨与分析机器学习中的数据处理之线性变换—标准化standardization、归一化Normalization/比例化Scaling的区别与联系
DataScience:深入探讨与分析机器学习中的数据处理之线性变换—标准化standardization、归一化Normalization/比例化Scaling的区别与联系目录深入探讨与分析机器学习中的标准化standardization、归一化Normalization/比例化Scaling的区别与联系1、标准化、归一化的应用场景1.1、为什么需要标准化、归一化1.2、什么场景下不需要标准化、归一化2、标准化standardization、归一化Normalization/比2020-03-19 10:42:372411
0
-
原创 ML岗位面试:10.11下午—上海某公司算法岗位(偏数据分析,证券金融行业)技术面试考点之sqlserver语言相关考察点复习
ML岗位面试:10.11下午—上海某公司算法岗位(偏数据分析,证券金融行业)技术面试考点之sqlserver语言相关考察点复习导读:其实,考察的知识点,博主都做过,但是,emmm,这些知识点,在我写代码中,几乎不会用到,so,会遗忘。所以,还需要下功夫,去多回忆回忆啦。 整个过程还算nice。目录T-SQL语句sql数据库基本操作1、创建表...2019-10-13 11:27:502696
0
-
原创 ML之FE:数据处理—特征工程之特征三化(标准化【四大数据类型(数值型/类别型/字符串型/时间型)】、归一化、向量化)简介、代码实现、案例应用之详细攻略
ML之FE:数据处理—特征工程之特征三化(标准化【四大数据类型(数值型/类别型/字符串型/时间型)】、归一化、向量化)简介、代码实现、案例应用之详细攻略目录真正意义的标准化与归一化1、标准化/Z-score标准化/0-1标准化——标准分布2、归一化/Min-Max标准化/离差标准化——幅度归一特征三化之标准化1、两大类特征1.1、 连续性特征1.2、离散性特征2、四大数据类型2.1、数值型变量/特征2.2、类别型变量/特征2.3、文本型(字符串型)2019-06-10 10:21:585895
0
-
原创 ML之FE:基于FE特征工程对RentListingInquries数据集进行预处理并导出为三种格式文件(csv格式/txt格式/libsvm稀疏txt格式)
ML之FE:基于FE特征工程对RentListingInquries数据集进行预处理并导出为三种格式文件(csv格式/txt格式/libsvm稀疏txt格式)目录输出结果设计思路核心代码输出结果1.1、RentListingInquries_FE_train.csv1.2、RentListingInquries_FE_test.c...2019-06-09 22:52:226107
0
-
原创 ML之FE:利用FE特征工程(分析两两数值型特征之间的相关性)对AllstateClaimsSeverity(Kaggle2016竞赛)数据集实现索赔成本值的回归预测
ML之FE:利用FE特征工程(分析两两数值型特征之间的相关性)对AllstateClaimsSeverity(Kaggle2016竞赛)数据集实现索赔成本值的回归预测目录输出结果设计思路核心代码输出结果1、数据集简介Dataset之AllstateClaimsSeverity:AllstateClaimsSeverity数据集(Kag...2019-06-08 10:14:496363
0