Apollo学习笔记(16)贝塞尔曲线

本文详细介绍了贝塞尔曲线的基本概念、数学表达式,以及一阶至高阶的递归绘制方法。重点讲解了控制点如何塑造曲线形状,并探讨了其在图形设计和路径规划中的应用。此外,还列举了贝塞尔曲线的特点和常见用途,如数据点与控制点的作用,以及在实际项目中的优势。
摘要由CSDN通过智能技术生成

贝塞尔曲线是应用于二维图形应用程序的一种曲线。在1962年由法国工程师皮埃尔·贝济埃运用于汽车的主体设计。贝塞尔曲线最初由保尔·德·卡斯特里奥于1959年运用德卡斯特里奥算法开发,以稳定数值的方法求出贝塞尔曲线.

曲线由起始点、终点和控制点组成。通过调整控制点,贝塞尔曲线的形状会发生变化。贝塞尔曲线有很多特殊的性质,现在主要应用于图形设计和路径规划。

贝塞尔曲线完全由控制点决定其形状,n个控制点对应着n-1阶的贝塞尔曲线,最重要的是,可以通过递归的方式来绘制。

一阶曲线

在这里插入图片描述
从图中可以看出,一阶的贝塞尔曲线是一条直线,并且通过几何相关的知识,可以得到一阶贝塞尔曲线关于t的坐标:

B 1 ( t ) = ( 1 − t ) P 0 + t P 1 , t ∈ [ 0 , 1 ] (1) B_{1}(t)=(1-t)P_{0}+tP_{1}, t \in [0,1] \tag{1} B1(t)=(1t)P0+tP1,t[0,1](1)
一阶贝塞尔曲线很好理解,就是一条直线, P 0 P_{0} P0坐标为 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) P 1 P_{1} P1坐标为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) B 1 ( t ) B_{1}(t) B1(t)为根据 t t t线性插值得到的。

二阶曲线

在这里插入图片描述
从图中可以看出, P 0 P_{0} P0 P 1 P_{1} P1之间有一个会根据 t t t值变化的插值点, P 1 P_{1} P1 P 2 P_{2} P2之间也有一个变化的插值点,设这两个插值点分别为 A 0 A_{0} A0 A 1 A_{1} A1

另外在点 A 0 A_{0} A0 A 1 A_{1} A1之间也有一个插值的动点。

到这一步,为什么递归可以绘制出贝塞尔曲线,是不是就很明白了。

高阶曲线

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
上图分别为三阶、四阶、五阶的贝塞尔曲线图,看起来是不是丝滑流畅。

通用公式:
P i k = { P i k=0 ( 1 − t ) P i k − 1 + t P i + 1 k − 1 k=1,2, … ,n ;   i=0,1, … ,n-k P_{i}^{k}=\begin{cases} P_{i} & \text{k=0} \\ (1-t)P_{i}^{k-1}+tP_{i+1}^{k-1} & \text{k=1,2,\dots,n};\space\text{i=0,1,\dots,n-k} \\ \end{cases} Pik={Pi(1t)Pik1+tPi+1k1k=0k=1,2,,n; i=0,1,,n-k

公式中, k k k表示阶数, i i i表示当前阶数条件下第 i i i个点。

高阶的贝塞尔曲线可以通过不停的递归,直到一阶。

贝塞尔曲线的特点及用途

对于贝塞尔曲线,最重要的点是数据点和控制点:

  • 数据点: 指一条路径的起始点和终止点
  • 控制点:控制点决定了一条路径的弯曲轨迹

根据控制点的个数,贝塞尔曲线被分为一阶贝塞尔曲线(0个控制点)、二阶贝塞尔曲线(1个控制点)、三阶贝塞尔曲线(2个控制点)等等。

特点一:曲线通过始点和终点,并与特征多边形首末两边相切于始点和终点,中间点将曲线拉向自己。
特点二:平面离散点控制曲线的形状,改变一个离散点的坐标,曲线的形状将随之改变(点对曲线具有整体控制性)。
特点三:曲线落在特征多边形的凸包之内,它比特征多边形更趋于光滑。

在规划中,其实大部分情况下,很多时候都没法找到一个合适的多项式,能满足相关的软硬约束,路点太多。因此,大部分时候,会将routing出来的路点,分成很多段,每段用贝塞尔曲线表示,计算量小,且光滑。

最后附上大神的链接:

https://www.jianshu.com/p/607a1ac26567

B 样条曲线这里给个大佬的链接,我就不献丑了。

https://blog.csdn.net/tuqu/article/details/4749586

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值