经典的深度卷积网络架构(二)

经典的深度卷积网络架构(二)

YOLO系列
YOLO v1

它是首个实现了实时物体检测的网络
基本原理
首先,将图像划分为SXS个网格,然后对于每个网格,通过深度卷积网络:

  • 给出对于其中物体所属类别的判断,图中用不同颜色代表不同的类别
  • 给出对于其中物体的包围框的几个预测(画在一起就是图中的大量黑框)和判断的信心
  • 每个包围框有5个参数:包围框中心相对于网格的x和y坐标,包围框的长,包围框的宽,预测的信心。
    在这里插入图片描述

最后我们可综合考虑所有网格的意见,合并接近的框,给出物体检测结果。
网络架构如图所示
在这里插入图片描述

用该网络架构训练Pascal VOC数据集,需要在ImageNet上预训练,而且是一个多任务网络,需要为每个任务设置合适的损失函数,以保证最终效果。
YOLO v1的运行效果如图所示
在这里插入图片描述

优点:速度非常快
缺点:识别精度相对较低,有时会漏掉小物体

YOLO v2
  1. 加入BN层,训练速度更快,效果更好
  2. 预训练时直接在更高分辨率的ImageNet上训练
  3. 采用全卷积架构,去掉全连接层
  4. 使用5种锚框,其实就是5种固定比例的包围框,每个包围框可拥有各自的类别预测,明显提高对于小物体的召回率
  5. 采用新的网络架构,即DarkNet系列
  6. 在预测包围框位置时,更倾向于预测中心店与网格中心接近的框,明显提高网络在训练时的稳定性
  7. 加入类似残差架构的passthrough层,让网络可同时观察13X13网格和26X26网格上的特征信息
  8. 在训练时采用多种不同大小的图像作为输入,提高网络的健壮性
Faster R-CNN

2015年的Faster R-CNN是当时最准确的物体检测网络
首先训练一个图像分类网络,或采用现成的训练好的网络,然后将全连接层去掉,只考虑它的最后一个卷积层的输出
然后在这个基础上训练一个Region Proposal Network(RPN),通过使用3X3和1X1的卷积,将512X60X40变为6kX60X40(例如,对于VGG-16,如果输入的图像是960X640,那最后一个卷积层的输出就是512X60X40),其中k代表锚框的个数,一般k=9,为3种大小和3种比例的组合。
在这里插入图片描述

Faster R-CNN和YOLO的主要区别是,YOLO把对于分类的判断也直接放在了候选框生成过程中,而Faster R-CNN还需做进一步分类
Faster R-CNN的分类方法与Fast R-CNN的方法相同,过程如下

  • 首先,进行RoI(Region of Interest)池化。具体而言,若候选框的尺寸是PXQ,找到它所对应的网络最后一个卷积层的区域,将其纵横都切成7份,通过最大池化变为7X7X通道数。

  • 然后将7X7X通道数,作为输入,经过一个小型全连接网络,输出候选框属于每个类别的概率,以及对于其位置的精细调整偏移值。

  • 在得到所有候选框的分类信息后,就可合并所有框,得到最终的结果。如图所示
    在这里插入图片描述

Mask-RCNN

Mask R-CNN在Faster R-CNN的基础上主要做了几点改进:

  1. 用RoIAlign代替RoI池化,具体是通过双线性插值得到更精确的结果,这对于后续的遮罩生成很重要

  2. 为卷积网络加入了FPN架构,它的思想是从图像的不同尺度提取特征,如图所示,经实验在此的效果比残差网络更好。
    在这里插入图片描述

  3. 在Faster R-CNN在RoI后的分类+包围框分支的旁边,加入一个生成图像分割的遮罩的分支,它使用全卷积架构,包括卷积和转置卷积,如图所示
    在这里插入图片描述

遮罩分支的输出是80X28X28,代表对于80个物体的区域预测,每个预测是1张28X28的图像,其中数字代表此位置属于此物体的概率。由于每个物体的预测是独立的,因此减少了类别竞争,可正确处理物体的重叠区域。
如图所示为Mask R-CNN的效果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值