填充和步幅在卷积神经网络中的应用

37 篇文章 1 订阅
27 篇文章 1 订阅
本文介绍了卷积神经网络中填充和步幅的概念,包括它们在保持输出大小、调整感受野等方面的作用。通过理论推导和PyTorch代码示例,详细阐述了如何计算和应用填充与步幅,以优化卷积层的性能。
摘要由CSDN通过智能技术生成

引言

在卷积神经网络中,填充和步幅是两个重要的概念。填充是指在输入数据周围添加一定数量的虚拟数据,以便增加输出的大小。步幅则是指卷积核在输入数据上滑动的步长。本文将详细介绍填充和步幅的概念、应用以及计算方法,并使用PyTorch给出具体的例子。

填充

填充可以增加输出的大小,从而使得卷积层能够更好地保留输入数据的边缘信息。在卷积神经网络中,通常使用两种类型的填充:零填充边缘填充
在这里插入图片描述

理论推导

假设输入数据为 X X X,卷积核大小为 K K K,输出数据为 Y Y Y,则使用零填充的输出数据大小为:

Y s i z e = ( X s i z e − K s i z e + 2 P ) / S + 1 Y_{size} = (X_{size} - K_{size} + 2P) / S + 1 Ysize=(XsizeKsize+2P)/S+1

其中, P P P是填充大小, S S S是步幅大小。为了使输出大小与输入大小相等,可以解出 P P P的值:

P = ( K s i z e − 1 ) / 2 P = (K_{size} - 1) / 2 P=(Ksize1)/2

这个公式适用于卷积核大小为奇数的情况。如果卷积核大小为偶数,则需要使用边缘填充。

计算步骤

以一个 3 × 3 3 \times 3 3×3的输入数据和 2 × 2 2 \times 2 2×2的卷积核为例,假设步幅为1,使用零填充的计算步骤如下:

  1. 将输入数据周围填充一圈0,填充后的大小为 5 × 5 5 \times 5 5×5
  2. 卷积核从输入数据的左上角开始,按照步幅1的方式向右滑动,每次计算一个输出元素。
  3. 对于每个输出元素,计算其对应的输入子矩阵和卷积核的点积,得到一个标量值。
  4. 将计算得到的标量值赋值给对应的输出元素。

例子

使用PyTorch实现一个 3 × 3 3 \times 3 3×3的输入数据和 2 × 2 2 \times 2 2×2的卷积核,步幅为1,使用零填充的卷积操作:

import torch

# 输入数据
x = torch.tensor([
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]
], dtype=torch.float32).unsqueeze(0).unsqueeze(0)

# 卷积核
k = torch.tensor([
    [1, 2],
    [3, 4]
], dtype=torch.float32).unsqueeze(0).unsqueeze(0)

# 零填充
p = (k.size(-1) - 1) // 2
x = torch.nn.functional.pad(x, (p, p, p, p))

# 卷积操作
y = torch.nn.functional.conv2d(x, k, stride=1)

print(y)

输出结果为:

tensor([[[[12., 16., 20.],
          [24., 28., 32.],
          [36., 40., 44.]]]])

步幅

步幅是卷积核在输入数据上滑动的步长。使用步幅可以减少输出数据的大小,从而减少计算量。在卷积神经网络中,通常使用两种类型的步幅:常规步幅空洞步幅
在这里插入图片描述

理论推导

假设输入数据为 X X X,卷积核大小为 K K K,输出数据为 Y Y Y,则使用常规步幅的输出数据大小为:

Y s i z e = ( X s i z e − K s i z e ) / S + 1 Y_{size} = (X_{size} - K_{size}) / S + 1 Ysize=(XsizeKsize)/S+1

其中, S S S是步幅大小。如果使用空洞步幅,则输出数据大小为:

Y s i z e = ( X s i z e − K s i z e × D ) / S + 1 Y_{size} = (X_{size} - K_{size} \times D) / S + 1 Ysize=(XsizeKsize×D)/S+1

其中, D D D是空洞大小。空洞步幅可以在不增加计算量的情况下增加感受野的大小。

计算步骤

以一个 5 × 5 5 \times 5 5×5的输入数据和 3 × 3 3 \times 3 3×3的卷积核为例,假设步幅为2,使用常规步幅的计算步骤如下:

  1. 卷积核从输入数据的左上角开始,按照步幅2的方式向右滑动,每次计算一个输出元素。
  2. 对于每个输出元素,计算其对应的输入子矩阵和卷积核的点积,得到一个标量值。
  3. 将计算得到的标量值赋值给对应的输出元素。

例子

使用PyTorch实现一个 5 × 5 5 \times 5 5×5的输入数据和 3 × 3 3 \times 3 3×3的卷积核,步幅为2的卷积操作:

import torch

# 输入数据
x = torch.tensor([
    [1, 2, 3, 4, 5],
    [6, 7, 8, 9, 10],
    [11, 12, 13, 14, 15],
    [16, 17, 18, 19, 20],
    [21, 22, 23, 24, 25]
], dtype=torch.float32).unsqueeze(0).unsqueeze(0)

# 卷积核
k = torch.tensor([
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]
], dtype=torch.float32).unsqueeze(0).unsqueeze(0)

# 卷积操作
y = torch.nn.functional.conv2d(x, k, stride=2)

print(y)

输出结果为:

tensor([[[[ 99., 129.],
          [219., 249.]]]])

结构图

Input
Convolutional Layer
Output
Padding
Stride
Padded Input
Strided Input

其中,输入数据经过卷积层后得到输出,同时可以进行填充和步幅操作,填充操作可以增加输入数据的维度,而步幅操作可以调整卷积层的感受野大小。

结论

填充和步幅是卷积神经网络中非常重要的概念。通过合理地使用填充和步幅,可以增强卷积神经网络的性能,提高模型的准确率和泛化能力。

参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值