卷积神经网络 - 填充和步幅

填充和步幅

1 - 填充


import torch
from torch import nn

# 为了方便起见,我们定义了一个计算卷积层的函数
# 此函数初始化卷积层权重,并对输入和输出提高和缩减相应的维数
def comp_conv2d(conv2d,X):
    # 这里的(1,1)表示批量大小和通道数都是1
    X = X.reshape((1,1) + X.shape)
    Y = conv2d(X)
    # 省略前两个维度:批量大小和通道
    return Y.reshape(Y.shape[2:])

# 请注意,这里每边都填充了1行或1列,因此总共添加了2行或2列
conv2d = nn.Conv2d(1,1,kernel_size=3,padding=1)
X = torch.rand(size=(8,8))
comp_conv2d(conv2d,X).shape
torch.Size([8, 8])

当卷积核的高度和宽度不同时,我们可以填充不同的高度和宽度,使输出和输入具有相同的高度和宽度。在如下示例中,我们使用高度为5,宽度为3的卷积核,高度和宽度两边的填充分别为2和1

conv2d = nn.Conv2d(1,1,kernel_size=(5,3),padding=(2,1))
comp_conv2d(conv2d,X).shape
torch.Size([8, 8])

2 - 步幅


conv2d = nn.Conv2d(1,1,kernel_size=3,padding=1,stride=2)
comp_conv2d(conv2d,X).shape
torch.Size([4, 4])

接下来,看一个稍微复杂的例子

conv2d = nn.Conv2d(1,1,kernel_size=(3,5),padding=(0,1),stride=(3,4))
comp_conv2d(conv2d,X).shape
torch.Size([2, 2])

3 - 小结

  • 填充可以增加输出的高度和宽度,这常用来使输出与输入具有相同的高和宽
  • 步幅可以减小输出的高和宽,例如输出的高和宽仅为输入的高和宽的1/n(n时一个大于1的整数)
  • 填充和步幅可用于有效地调整数据的维度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值