import random
import math
#---神经网络Model---
class Ann:
#构造函数 初始化模型参数
def __init__(self, i_num, h_num, o_num):
#可调参数
self.learn_rate = 0.1 #学习率
self.num_long = 2 #输出结果位数
self.random_long = 10 #随机种子位数
#输入参数
self.input_num = i_num #输入层 数量
self.hidden_num = h_num #隐层 数量
self.output_num = o_num #输出层 数量
#模型参数
self.input = [] #输入层
self.hidden = [] #隐层
self.output = [] #输出层
self.error = [] #误差
self.expectation = [] #期望
self.weight_ih = self.__ini_weight(self.input_num, self.hidden_num) #输入层->隐层 连接权
self.weight_ho = self.__ini_weight(self.hidden_num, self.output_num) #隐层->输出层 连接权
self.threshold_h = self.__ini_threshold(self.hidden_num) #隐层 阈值
self.threshold_o = self.__ini_
Python实现单隐层神经网络
最新推荐文章于 2022-11-25 10:15:17 发布
该博客详细介绍了如何使用Python实现一个简单的单隐藏层神经网络,包括构造函数、激励函数、权重初始化、阈值初始化、前向传播、误差计算及反向传播等关键步骤。通过实例展示了神经网络的训练过程,以及对随机生成数据的预测测试。
摘要由CSDN通过智能技术生成