我们现在回到模型设定的开始,一般而言,模型构建前我们是隐含的假定“我们的模型是对现实的真实反应”,更为专业地讲,假定所选择的模型中不存在着设定偏差或者说设定误差,但是我们回头过来想一下个,我们所选择的模型就一定是没有任何误差的吗?我想,肯定不是的。
那么,我们就回到了下面几个问题的解答上面:
1.“好的”或者“正确的”模型是什么样的呢?有什么性质?
2.存在哪些设定误差呢?设定误差的后果有哪些呢?我们如何诊断设定误差?
一、模型评价标准
计量经济学家哈维(Harvey)列出了模型的标准:
- 节省性;一个模型无法完全把握现实情形,在任何模型建立过程中,一定程度的抽象或简化是不可避免的。
- 可识别性:对给定的一组数据,估计的参数必须具有唯一值,或者说每个参数只有一个估计值。
- 拟合优度:回顾分析