混淆矩阵:
预测阳性 | 预测阴性 | 总计 | |
---|---|---|---|
实际阳性 | TP | FN | P |
实际阴性 | FP | TN | N |
总计 | X | Y | n t o t a l n_{total} ntotal |
-
准确率(accuracy)
T P + T N n t o t a l = T P + T N T P + T N + F P + F N \frac{TP+TN}{n_{total}}=\frac{TP+TN}{TP+TN+FP+FN} ntotalTP+TN=TP+TN+FP+FNTP+TN
缺点:无法应对样本不均衡情况。当负样本占99%时,吧所有样本预测为负样本也能获得99%的准确率 -
精确率(precision)
T P X = T P T P + F P \frac{TP}{X}=\frac{TP}{TP+FP} XTP=TP+FPTP -
召回率(recall)
T P P = T P T P + F N \frac{TP}{P}=\frac{TP}{TP+FN} PTP=TP+FNTP -
F1值
2 ∗ p r e c i s i o n ∗ r e c a l l p r e c i s i o n + r e c a l l 2*\frac{precision*recall}{precision+recall} 2∗precision+recallprecision∗recall -
ROC曲线(Receiver operating characteristic Curve, 受试者工作特征曲线)
横坐标:假阳性率, F P R = F P N FPR=\frac{FP}{N} FPR=NFP,负样本中预测为正样本的比例
纵坐标:真阳性率, T P R = T P P TPR=\frac{TP}{P} TPR=PTP,衡量敏感度,召回率
绘制:
法1:不断移动分类器的阈值,计算TPR和FPR标在图中,最后连接
法2:横坐标刻度间隔设为 1 N \frac1N N1,纵坐标刻度间隔设为 1 P \frac1P P1,根据模型输出结果降序排列,依次遍历样本,每遇到一个正样本就沿纵轴方向绘制一个单位间隔,否则沿横轴绘制一个单位间隔。
-
AUC(Area under the curve)
ROC曲线下的面积,沿着横轴做积分即可。实际中ROC曲线都会在 y = x y=x y=x上方,所有AUC一般在0.5和1之间。AUC值越大,说明模型性能越好。
含义:表示预测的整理排在负例前面的概率。
-
PR曲线和ROC曲线的区别?
当正负样本的分布发生变化时,ROC曲线形状基本不变,而P-R曲线一般变化剧烈
若将表中N,即负样本个数扩大10倍,则对于ROC来说,计算横坐标的分子(FP)和分母(N)都会相应扩大,计算纵坐标的分子(TP)和分母§保持不变,故ROC曲线基本不变。
而对于P-R曲线,横坐标召回率基本不变,纵坐标精确率的TP和TP+FP只有FP有变动,故会带来较大变化
ROC曲线可以尽量降低不同测试集带来的干扰,更加客观的衡量模型本身性能。在实际中,正负样本数量往往不平衡,若选择不同测试集,P-R曲线的变化就会非常大,而ROC能更加稳定的反应模型本身的好坏。
如果研究者希望看到模型在特定数据集上的表现,则P-R曲线更加直观。