深入浅出学习结构方程模型【3效度】

本文深入探讨结构方程模型中的信度和效度概念。信度涉及测量的一致性和稳定性,分为内在信度和外在信度。效度关注问卷设计的有效性和准确性,包括内容效度、结构效度、聚合效度和区分效度,常通过因子分析验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

信度你可以把它理解为可靠度、一致性、稳定性。 比如说,在对同一对象进行测量,多次测量结果都很接近,大家会认为这个结果是可信的,真实的,也就是信度高。如果每次测量的结果都有很大的差异(例如,用同一份考卷对同一批学生进行测验,每次测试平均分数差别都很大),则说明信度较低。 同样在问卷研究中,也是通过信度分析来测量样本回答结果是否真实可靠,检验信度越高,就是表示结果越可信。

信度可分为内在信度和外在信度两类。 内在信度:是指衡量研究问卷中的多个题目是否测量了同一概念或者内容,即题目之间是否具有内在一致性。 外在信度:通常指不同时间测量时,是否测量结果具有一致性。比如说刚才举例中提到的考试成绩例子。

效度分析,简单来说就是问卷设计的有效性、准确程度。 当我们在为研究主题设计问卷时,都会希望问题实际测量到的是我们希望测量的,这样研究的数据才能准确的说明问题。 例如,我们想了解一个班级里学生的综合成绩情况,正式研究中如果仅测试数学一科,然后得出结论,这样的研究有效性可能很低,原因在于实际测量的方向与研究方向之间有很大偏差。

效度又可分为内容效度,结构效度,聚合(收敛)效度,区分效度等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱听雨声的北方汉

你的鼓励是我努力前进的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值