两个图像性能对比的指标

适用范围:

1、无前景图像的评估,可以评估对这种图像矫正、去除噪声、滤波等等前后两张图像的性能

2、两张特征固定的图像的评估

性能指标为连个:一个是PSNR,基于对图像灰阶的均方差的评估,opencv中double PSNR(InputArray src1, InputArray src2, double R=255.);可以直接调用

第二个是SSIM,对形状结构的评估,代码如下

  Scalar getMSSIM(const Mat& i1, const Mat& i2)
{
    const double C1 = 6.5025, C2 = 58.5225;
    int d = CV_32F;
    Mat I1, I2;
    i1.convertTo(I1, d);            
    i2.convertTo(I2, d);
    Mat I2_2 = I2.mul(I2);        // I2^2
    Mat I1_2 = I1.mul(I1);        // I1^2
    Mat I1_I2 = I1.mul(I2);        // I1 * I2
    Mat mu1, mu2;                  
    GaussianBlur(I1, mu1, Size(11, 11), 1.5);
    GaussianBlur(I2, mu2, Size(11, 11), 1.5);
    Mat mu1_2 = mu1.mul(mu1);
    Mat mu2_2 = mu2.mul(mu2);
    Mat mu1_mu2 = mu1.mul(mu2);
    Mat sigma1_2, sigma2_2, sigma12;
    GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
    sigma1_2 -= mu1_2;
    GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
    sigma2_2 -= mu2_2;
    GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
    sigma12 -= mu1_mu2;
    Mat t1, t2, t3;
    t1 = 2 * mu1_mu2 + C1;
    t2 = 2 * sigma12 + C2;
    t3 = t1.mul(t2);                 // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
    t1 = mu1_2 + mu2_2 + C1;
    t2 = sigma1_2 + sigma2_2 + C2;
    t1 = t1.mul(t2);                 // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
    Mat ssim_map;
    divide(t3, t1, ssim_map);        // ssim_map =  t3./t1;
    Scalar mssim = mean(ssim_map);   // mssim是ssim的平均值
    return mssim;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值