LeNet,AlexNet,VGG实现

LeNet

在这里插入图片描述

5x5 Conv(6),pad 2:意为 5x5的卷积核,输出通道为6,填充为2,由(f-1)/2 == 2可知,为same填充,即输入输出大小不变

速记:两卷平,三接

class Reshape(torch.nn.Module): 
    def forward(self, x):
        return x.reshape(-1, 1, 28, 28)


net = torch.nn.Sequential(
    Reshape(),
    nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),
    nn.Flatten(),
    nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),
    nn.Linear(120, 84), nn.Sigmoid(),
    nn.Linear(84, 10)
)

AlexNet

在这里插入图片描述

速记:两卷最池,三卷最池,三接

net = nn.Sequential(
    # 这里,我们使用一个11*11的更大窗口来捕捉对象。
    # 同时,步幅为4,以减少输出的高度和宽度。
    # 另外,输出通道的数目远大于LeNet
    nn.Conv2d(1, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
    nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2),
    # 使用三个连续的卷积层和较小的卷积窗口。
    # 除了最后的卷积层,输出通道的数量进一步增加。
    # 在前两个卷积层之后,池化层不用于减少输入的高度和宽度
    nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),
    nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),
    nn.MaxPool2d(kernel_size=3, stride=2), nn.Flatten(),
    # 这里,全连接层的输出数量是LeNet中的好几倍。使用dropout层来减轻过度拟合
    nn.Linear(6400, 4096), nn.ReLU(), nn.Dropout(p=0.5),
    nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(p=0.5),
    # 最后是输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
    nn.Linear(4096, 10)
)

VGG

VGG使用可重复使用的卷积块来构建深度卷积神经网络
不同的卷积块个数和超参数可以得到不同复杂度的变种

在这里插入图片描述

n卷最池,n块,三接

def vgg_block(num_convs, in_channel, out_channel):
    layer = []
    for _ in range(num_convs):
        layer.append(nn.Conv2d(in_channel, out_channel, kernel_size=3, padding=1))
        layer.append(nn.ReLU())
        in_channel = out_channel
    layer.append(nn.MaxPool2d(2, stride=2))
    return nn.Sequential(*layer)


conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))


def vgg(conv_arch):
    in_channel = 1
    conv_a = []
    for num, out_channel in conv_arch:
        conv_a.append(vgg_block(num, in_channel, out_channel))
        in_channel = out_channel

    return nn.Sequential(*conv_a, nn.Flatten(),
                         nn.Linear(out_channel * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
                         nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
                         nn.Linear(4096, 10))
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值