SVM中数据缩放(scale)源码理解

本文深入探讨SVM训练时的数据缩放,重点关注参数svm_scaling的使用,该参数涉及数据的归一化操作。通过引用《A Practical Guide to Support Vector Classification》中的内容,文章提供了一份数据缩放及加载(确保训练和测试数据一致性)的源码实现总结。
摘要由CSDN通过智能技术生成

在进行svm训练的时候,会有一个参数 svm_scaling scaling,该参数实现对数据的归一化操作,在A Practical Guide to Support Vector Classification一文中有介绍,https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf,下面是对数据缩放以及加载(训练数据和测试数据进行同样的缩放)的源码实现进行汇总


//svm_wrapper.cpp
//生成缩放因子

void
pcl::SVMTrain::scaleFactors (std::vector<SVMData> training_set, svm_scaling &scaling)
{
  int max = 0;

  for (size_t i = 0; i < training_set.size() ; i++)
    for (size_t j = 0; j < training_set[i].SV.size() ; j++)
      if (training_set[i].SV[j].idx > max)
	max = training_set[i].SV[j].idx; // max number of features

  max += 1;

  scaling.obj = Malloc (struct svm_node, max + 1);
  scaling.max = max;
  scaling.obj[max].index = -1; // last index is -1

  for (int i &#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值