题目描述:
"吃货"和"馋嘴"两人到披萨店点了一份铁盘(圆形)披萨,并嘱咐店员将披萨按放射状切成大小相同的偶数个小块。但是粗心的服务员将披萨切成了每块大小都完全不同奇数块,且肉眼能分辨出大小。由于两人都想吃到最多的披萨,他们商量了一个他们认为公平的分法:从"吃货"开始,轮流取披萨。除了第一块披萨可以任意选取外,其他都必须从缺口开始选。
他俩选披萨的思路不同。"馋嘴"每次都会选最大块的披萨,而且"吃货"知道"馋嘴"的想法。
已知披萨小块的数量以及每块的大小,求"吃货"能分得的最大的披萨大小的总和。
输入描述:
第一行为一个正整数奇数N,表示披萨小块数量,且3<=N<=500;
接下来的第二行到第N+1行(共N行),每行为一个正整数,表示第i块披萨的大小,其中1<=i<=N。披萨小块从某一块开始,按照一个方向一次顺序编号为1~N,每块披萨的大小范围为[1,2147483647]
输出描述:
对于每组数据输出一行两个整数的和
示例1:
输入
5
8
2
10
5
7
输出
9
说明:该实例中,有5块披萨。每块大小依次为8,2,10,5,7.按照如下顺序拿披萨,可以
使“吃货”拿到最多披萨:
1. “吃货”拿大小为10的披萨;
2. “馋嘴”拿大小为5的披萨;
3. “吃货”拿大小为7的披萨;
4. “馋嘴”拿大小为8的披萨;
5. “吃货”拿大小为2的披萨;
C++源码:
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstdlib>
using namespace std;
long long maxPizzaForA(int N, vector<long long>& pizzas) {
// 将披萨大小从大到小排序
sort(pizzas.rbegin(), pizzas.rend());
long long sumA = 0; // A能分得的披萨大小总和
bool isATurn = true; // 是否轮到A取披萨
for (int i = 0; -
i < N; ++i) {
if (isATurn) {
// 如果是第一块或者从缺口开始,则A取当前最大块
sumA += pizzas[i];
isATurn = false; // 下次轮到B
}
else {
// B总是取当前最大块(已经由A取过,所以这里不实际取走)
isATurn = true; // 下次轮到A
}
}
return sumA;
}
int main() {
int N;
cin >> N;
if (N < 3 || N > 500 || N % 2 == 0) {
cout << "Invalid input: N should be an odd number between 3 and 500." << endl;
return -1;
}
vector<long long> pizzas(N);
for (int i = 0; i < N; ++i) {
cin >> pizzas[i];
if (pizzas[i] < 1 || pizzas[i] > 2147483647) {
cout << "Invalid pizza size." << endl;
return -1;
}
}
long long result = maxPizzaForA(N, pizzas);
cout << "A can get the maximum total pizza size of: " << result << endl;
system("pause");
return 0;
}