原创 小王搬运工 时序课堂 2024年07月15日 16:19 新疆
《DD-Net: Dual decoder network with curriculum learning for full waveform inversion》
Deep learning full waveform inversion (DL-FWI) is gaining much research interest due to its high prediction efficiency, effective exploitation of spatial correlation, and lack of the need for an initial estimate.
译文:深度学习全波形反演(DL-FWI)因其预测效率高、可有效利用空间相关性、不需要初始估计等优点而备受关注。
解析:此部分写研究背景+问题重要性。
As a data-driven approach, it has several key issues. For example, effective deep networks need to be designed, the training process needs to be controlled, and the generalization ability needs to be enhanced.
译文:作为一种数据驱动的方法,它有几个关键问题。例如,需要设计有效的深度网络,需要控制训练过程,需要增强泛化能力。
解析:此部分写当前存在的挑战。这里提出来三个挑战,后面必然会跟着这三个问题对应的解决方案,做到了一一对应。
In this paper, we propose a dual decoder network with curriculum learning (DD-Net) to handle these issues. First, we design a U-Net with two decoders to grasp the velocity value and stratigraphic boundary information of the velocity model. These decoders’ feedback will be combined at the encoder to enhance the encoding of edge spatial information. Second, we introduce curriculum learning to network training by organizing data in three difficulty levels. The easy-to-hard training process enhances the data fitting of the network. Third, we apply the network to low resolution seismic observations via a pre-network dimension reducer. This can serve as a general design idea without destroying the original network characteristics.
译文:本文提出了一种具有课程学习功能的双解码器网络(DDNet)来解决这些问题。首先,我们设计了一个U-Net,具有两个解码器,以获取速度模型的速度值和地层边界信息。这些解码器的反馈将在编码器处进行组合,以增强边缘空间信息的编码。其次,我们通过组织三个难度级别的数据,将课程学习引入网络训练。这种易难的训练过程增强了网络的数据拟合性。第三,通过网络前降维器将网络应用于低分辨率地震观测。这可以作为一个一般的设计思想,而不会破坏原有的网络特性。
解析:此部分写使用什么方法解决这些问题。这里先写了提出了一种框架解决了这三个问题。然后,又分别介绍了三种技术以及如何对这些问题进行解决。
Experiments are undertaken on SEG salt datasets and four synthetic datasets from OpenFWI.
译文:在SEG盐数据集和OpenFWI的4个合成数据集上进行了实验。
解析:此部分写实验结果。
见解:我觉得这部分提一些实验数据对比更好。
The results show that our network is superior to other state-of- the-art data-driven networks.
译文:结果表明,我们的网络优于其他最先进的数据驱动网络。
解析:此部分写结论。
The source code is available at github.com/fansmale/ddnet.
译文:源代码可从github.com/fansmale/ddnet获得。
见解:这个主要看你的代码开不开源,不开源可以不写。开源的话这个可以写到摘要中、引言中或者某一页的脚注。
论文写作2
论文阅读&写作4
论文写作 · 目录
上一篇论文写作经验-摘要1