Stacked Hourglass Networks for Human Pose Estimation

介绍

这是一篇2016年做单人姿态估计的文章

实验用的是MPII sigle 和 FLIC ,指标PCKh

通过堆叠沙漏结构的网络进行人体姿态估计

沙漏结构指通过pooling得到低分辨率的特征,然后通过上采样得到高分辨率特征的网络结构

论文指出该网络可以捕获并控制图像所有尺度上的信息。

另一方面,沙漏网络区别于先前的设计,主要在其更对称的拓扑结构。

通过连续堆放这样的沙漏网络,可以实现重复的bottom-up,top-down的推理

论文所提结构成功的原因有两点:

  1. 上述的重复双向推理
  2. 训练过程中使用了中间监督

这个单沙漏网络的特点在于在推导heatmap时,既使用到高层的语义,也结合了底层的纹理信息,这样使得定位更加准确

然后通过多个沙漏网络堆叠方式,让后面的网络学习前面网络学习不到的东西,即更难的骨骼关键点检测,finetune再finetune,取得更好的结果下面左边的图展示了,第二层hourglass输出和最后一层(第八层)的结果对比,从例子看明显第八层的finetune后结果比第二层要好不少

上面右边的图是为了说明性能提升究竟是加深网络导致的,还是本文所提的堆叠多个finetune沙漏结构所取得的

中间的图是PCKh结果,上面的点是各网络各子沙漏的结果,同意网络,越往后的层效果越好,网络深度相同的情况下,分越多的子沙漏会比分的少网络,最终输出的结果会高那么一点点

感觉这里缺了一个单层的结果,即没有finetune时的效果,当然也可以把总网络的一半当作是单层效果,分别看分两层和4层的效果如何(0.846,0.865,0.871)

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 堆叠沙漏网络(Stacked Hourglass Networks)是一种用于人体姿态估计的深度学习模型。它由多个沙漏模块(Hourglass Module)堆叠而成,每个沙漏模块都包含了卷积神经网络和池化层,用于提取特征。堆叠沙漏网络的优点是可以对不同尺度的特征进行处理,从而提高了姿态估计的准确性。 ### 回答2: Stacked Hourglass Networks (SHN)是一种用于图像分割和人体姿势估计的神经网络结构,由卡内基梅隆大学和康奈尔大学的研究人员于2016年提出。SHN通过多层级的堆叠半监督网络,在对输入图像进行多尺度特征提取的同时实现了高分辨率的姿态估计。 SHN主要由两部分构成:堆叠的小型Hourglass网络和批量标准化(BN)。Hourglass网络是指由多层卷积层和上采样层、下采样层构成的一个可编程的Block,用于具体化姿态估计的操作。堆叠在一起的小型Hourglass网络在不同的分辨率和空间上进行特征提取,以共同实现最终的分割和姿态估计结果。批量标准化是一种用于规范化网络输入和加速网络收敛的技术。 SHN对于图像分割和人体姿势估计具有较高的准确率和鲁棒性。采用上述网络结构进行人体姿势估计,可优化难度较大的人体部位之间的相互作用和相互影响,使得姿态估计的精度和稳定性得到了显著提高,在肢体遮挡、图像噪声和背景复杂等困难情况下也可以取得良好的表现。 总之,作为一种多层级、半监督的神经网络结构,SHN在图像分割和人体姿势估计中发挥着越来越重要的作用,也为相关领域的研究和应用提供了一个重要的思路和工具。 ### 回答3: Stacked Hourglass Networks是一个先进的计算视觉网络,用于实现人类关键点检测和姿势估计。与其他现有的方法相比,它具有更准确,更可重复和更快速的输出。该模型通过串联8个Hourglass模块构建,Hourglass模块是特殊的卷积神经网络,可以对图像进行多次分辨率下采样和上采样以提高输出精度。这些模块也具有回归和分类头,能够同时预测关键点的位置和姿势。Stacked Hourglass Networks 模型已经在许多场景中取得成功,如动态手势识别、行人关键点检测和3D姿态估计等。 Stacked Hourglass Networks的核心思想基于卷积神经网络和图像金字塔技术。在处理人体关键点检测时,由于人的姿势会因为动态变化和视角变换而导致关键点位置的不稳定性。因此,处理这个任务的模型需要在不同的尺度下检测关键点和姿势。Stacked Hourglass Networks通过多个Hourglass模块的串联,每个模块将输入图像分别经过多次下采样和上采样,产生一系列不同尺度的特征图。这些特征图经过回归和分类头进行训练和预测,最后合成出整个图像输入的关键点和姿势输出。 Stacked Hourglass Networks模型具有许多优点,如精度高,稳健,具有可解释性等。在实际应用中已经取得了很好的效果。未来,Stacked Hourglass Networks模型仍然有很大的研究空间,可以通过各种改进和方法来提高性能,同时可以将其用于更多的视觉任务中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值