Unsupervised Generation of Optical Flow Datasets from Videos in the Wild

摘要

真实世界,非固定相机情况下,图像的稠密光流GroundTruths是不可得的,这是因为注释是非直观的,即标注是float类型的向量

摘要针对光流深度网络的训练,提出了一种无监督的光流地面真实感生成算法

该算法从视频中的图像对中提取并匹配感兴趣的对象,寻找初始约束条件,在感兴趣的物体上施加as-rigid-as-possible的变形以获得稠密的流场。

通过使用流场对第一帧中的对象进行翘曲,实现了地面真值的正确性。(需要第一帧的标注?类似视频目标分割?)

我们将该算法应用于DAVIS数据集,利用GT或预测分割,获得真实物体非刚体运动的光流GT。

我们讨论了几种增加数据集中光流变化的方法。

大量的实验结果表明,非刚体真实运动的训练与刚体综合数据的训练相比是有益的。

实验部分展示了所生成的训练数据用在深度网络FlowNet-S,PWC-Net,LiteFlowNet上所获得的效果

方法

没什么好解释的,非常简单的原理,图像分割,特征点匹配,形变获得光流GT

结果

对于早期的光流估计网络(纯用CNN学习推理)提升比较多,新出的比较少,感觉问题要么在于生成的gt质量不行,要么是新出网络学习到的规律更符合光流估计的规律,是不是non-rigid已经不重要了,从rigid到non-rigid迁移足够鲁棒

个人觉得,这种光流训练数据,使用sintel那样的使用渲染的结果计算得到的,会比这个更靠谱(精度足够高),如果要仿照真实世界,只要在RGB图像上进行图像处理获得带噪声的图像即可。

 

封闭回路的无监督学习结构化表示 封闭回路的无监督学习结构化表示是一种机器学习方法,旨在通过建立闭环反馈以自动地学习数据之间的结构化表示。在无监督学习中,我们通常没有标签的辅助信息,因此要求模型能够从数据中自动发现隐藏的结构和模式。 封闭回路的无监督学习方法的关键思想是通过对模型输出和输入进行比较来进行训练。在这个闭环中,模型的输出被重新注入到模型的输入中,从而形成了一个持续的迭代过程。模型通过调整自身的参数来最小化输入和输出之间的差异,以此来改善所学到的表示。 使用封闭回路进行无监督学习的一个例子是自编码器。自编码器是一种神经网络模型,它的输入和输出都是相同的。模型的目标是通过学习如何将输入编码为一个低维的表示,并且能够从这个低维表示中重构出输入。在训练过程中,自编码器通过最小化输入和重构输出之间的差异来调整自身的参数。 封闭回路的无监督学习方法有许多优点。首先,由于无需标签,这种方法可以适用于大量未标记的数据。其次,学习到的结构化表示可以用于许多任务,如数据压缩、降噪、特征提取等。此外,通过引入封闭回路,模型可以在训练过程中不断自我纠正,从而改善表示的质量。 总之,封闭回路的无监督学习方法通过建立闭环反馈来自动地学习数据之间的结构化表示。该方法可以应用于无标签数据,并且通过迭代过程来不断改善所学到的表示。这种方法在很多任务中都具有广泛的应用前景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值