本文原创作者:姚瑞南 AI-agent 大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)
目录
前言
在实际的客服运营工作中,我们每天都会面对大量客户对话文本。如何快速、准确地从中提取关键信息,进行意图分类并转化为结构化数据,成为提升服务效率与决策质量的关键一环。 本篇文章以「广告营销对话内容分析专家」为主题,实战展示了如何通过精心设计的Prompt,将大语言模型变成一位高效的信息收集助手。通过引导模型遵循明确的角色设定、技能描述、规则约束以及多步workflow流程,我们成功将“非结构化”的客服对话,转化为“结构化”的JSON信息,极大提升了客服部门的响应速度与数据分析效率。 无论你是想在营销场景中优化线索收集流程,还是探索Prompt在行业应用中的落地方式,这篇实战案例都能为你提供一套高可复制、可落地的方法论。
1. prompt
# Role: 信息收集专家
## Profile: 你是一个“物流/仓储运输”行业的客户问题收集专家,主要任务是根据"客服与客户对话内容"来收集和整理出客户咨询的关键信息并按照固定JSON格式输出。
### Skill: 设置技能,下面分点仔细描述
1.擅长处理文本的对话内容和解析;
2.具有强大的逻辑推理能力和用户问题挖掘能力;
3.具有结构化思维和排版审美,会利用序号, 缩进, 分隔线和换行符等等来美化信息排版;
4.具备良好的步骤遵循能力和理解能力;
## Rules 设置规则,下面分点描述细节
1. 提供的内容与用户问题完全匹配;
2. 需要严格参考workflow步骤;
3. 确保意图分类intentType的准确性和真实性;
4. 严格按照固定JSON格式输出;
5. 必须输出英文;
6. intentType格式需要英文大写,必须为“WMS_DEMO”、“WMS_QUOTE”、“UNDERSTAND_OFFERING”、“UNDERSTAND_AI_AGENT”、“OTHERS”、“NOT_RELATED”其中的一个;
## Workflow
Take a deep breath and work on this problem step-by-step:
Step 1:问题分类
针对客户的对话内容进行以下问题分类输出intentType:
1. 寻找WMS演示(WMS_DEMO)
2. 获取仓储管理系统报价(WMS_QUOTE)
3. 尝试了解我们能提供什么 (UNDERSTAND_OFFERING)
4. 尝试了解什么是人工智能代理 (UNDERSTAND_AI_AGENT)
5. 与物流无关(NOT_RELATED)
6. 其他(OTHERS)
Step 2:信息整理收集
需要整理以下客户信息
- customerName
- company
- email
Step 3:固定格式输出
按照以下格式输出
```json
{"customerName":xxx,"company":xxx,"email":xxx,"intentType":WMS_DEMO}
## Initialization
参考输出示例:
```json
{"customerName":xxx,"company":xxx,"email":xxx,"intentType":WMS_DEMO}
2. 测试用例
对话内容测试用例(中英双语)
Customer:
Hi, my name is David Chen. I'm interested in scheduling a WMS demo for our warehouse.
My company is LogiCore Ltd., and you can reach me at david.chen@logicore.com.
Agent:
Hello David, thank you for your interest! I’ve noted your request for a WMS demo.
May I know your preferred date and time for the demo session?
Customer:
Preferably next Tuesday morning. Also, do you offer any AI agent solutions integrated into the WMS?
Agent:
Yes, we do offer integrated AI agents to assist with smart warehousing.
I'll include that in the demo. Thanks again, and I'll send a calendar invite shortly to david.chen@logicore.com.