本文原创作者:姚瑞南 AI-agent 大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)
目录
2.1 内部任务信息(Inside-trial Information): 当前任务执行信息
2.2 跨任务信息( Cross-trial Information ): 历史任务重的长期积累学习
前言:
大半年前,介绍了基于LLM的Agent知识,文章《大模型智能体 LLM Agent》中提到:
Agent是大模型与场景间价值传递桥梁, 重要性不言而喻。
从功能上看,Agent有多个组件构成,规划、记忆和工具使用等
Agent
=LLM
+ Planning + Feedback + Tool use
今天聊聊其中的一个组件:Memory,记忆模块
1. 什么是记忆?
记忆定义为用于获取、存储、保留和后续检索信息的过程,人类大脑中主要有三种类型的记忆。
1.1 感官记忆(Sensory memory)
记忆最早阶段,提供原始刺激结束后保留感官信息(视觉,听觉等)印象的能力,通常只持续几秒钟。
感官记忆的子类别包括图标记忆(视觉)、回声记忆(听觉)和触觉记忆(触觉)。
短时记忆(STM)或工作记忆(Working Memory)
存储了当下能意识到的所有信息,以及执行复杂的认知任务(如学习和推理)所需的信息,大概可以存储7件事,持续20-30秒。
1.2 长期记忆(LTM)
顾名思义,LTM可以将信息存储相当长的时间,范围从几天到几十年不等,具有基本上无限的存储容量。LTM有两种亚型:
1)显式/陈述性记忆,即对事实和事件的记忆,指那些可以有意识地回忆起来的记忆,包括情景记忆(事件和经验)和语义记忆(事实和概念)。
2)隐式/程序性记忆,这种类型的记忆是无意识的,包括自动执行的技能和例程,比如骑自行车或在键盘上打字。
对应语言模型概念:
1)作为原始输入(包括文本、图像或其他形式)的学习嵌入表征的感官记忆;
2)短期记忆就是上下文学习(in-context learning),非常短且影响范围有限,受到Transformer的上下文窗口长度的限制。
3)长期记忆作为智能体在查询时可用的外部向量存储,可通过快速检索访问。
可见,记忆模块像 Agent大脑,帮助积累经验,自我进化,让行为更加一致、合理和有效。
LLM Memory设计灵感来自人类记忆过程的认知科学研究。