【Agent技术解读】memory(记忆)模块

本文原创作者:姚瑞南 AI-agent 大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)           

目录

前言:

1. 什么是记忆?

1.1 感官记忆(Sensory memory)

1.2 长期记忆(LTM)

对应语言模型概念:

1.3 人类记忆发展史

1.4 Agent 记忆结构设计借鉴了人类记忆特点

2. LLM记忆从何而来?

2.1 内部任务信息(Inside-trial Information): 当前任务执行信息

2.2 跨任务信息( Cross-trial Information ): 历史任务重的长期积累学习

2.3 外部知识(External Knowledge)

3. LLM记忆如何保存?

3.1 文本形式(如RAG)

3.2 参数形式

3.3 图谱

4. LLM记忆如何工作?

4.1 实际应用中


前言:

大半年前,介绍了基于LLM的Agent知识,文章《大模型智能体 LLM Agent》中提到:

Agent是大模型与场景间价值传递桥梁, 重要性不言而喻。

从功能上看,Agent有多个组件构成,规划、记忆和工具使用等

Agent = LLM + Planning + Feedback + Tool use

今天聊聊其中的一个组件:Memory,记忆模块

1. 什么是记忆?

记忆定义为用于获取、存储、保留和后续检索信息的过程,人类大脑中主要有三种类型的记忆。

1.1 感官记忆(Sensory memory)

记忆最早阶段,提供原始刺激结束后保留感官信息(视觉,听觉等)印象的能力,通常只持续几秒钟。

感官记忆的子类别包括图标记忆(视觉)、回声记忆(听觉)和触觉记忆(触觉)

短时记忆(STM)或工作记忆(Working Memory)

存储了当下能意识到的所有信息,以及执行复杂的认知任务(如学习和推理)所需的信息,大概可以存储7件事,持续20-30秒。

1.2 长期记忆(LTM)

顾名思义,LTM可以将信息存储相当长的时间,范围从几天到几十年不等,具有基本上无限的存储容量。LTM有两种亚型:

1)显式/陈述性记忆,即对事实和事件的记忆,指那些可以有意识地回忆起来的记忆,包括情景记忆(事件和经验)和语义记忆(事实和概念)。

2)隐式/程序性记忆,这种类型的记忆是无意识的,包括自动执行的技能和例程,比如骑自行车或在键盘上打字。

对应语言模型概念:

1)作为原始输入(包括文本、图像或其他形式)的学习嵌入表征的感官记忆;

2)短期记忆就是上下文学习(in-context learning),非常短且影响范围有限,受到Transformer的上下文窗口长度的限制。

3)长期记忆作为智能体在查询时可用的外部向量存储,可通过快速检索访问。

可见,记忆模块像 Agent大脑,帮助积累经验,自我进化,让行为更加一致、合理和有效。

LLM Memory设计灵感来自人类记忆过程的认知科学研究。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值