理科生必懂的逻辑梗------傅里叶变换的意义
共轭复数(Complex Conjugate)是指一个复数的实部相同,而虚部相反的另一个复数。对于复数\(z=a+bi\)(其中\(a\)和\(b\)是实数,\(i\)是虚数单位),它的共轭复数表示为\(\overline{z}=a-bi\)。
共轭复数之和的性质:
• 实数:两个共轭复数相加,结果总是实数。这是因为虚部会相互抵消。
• 模长不变:复数与其共轭复数的和的模长(即复数在复平面上的长度)等于原复数模长的两倍。
• 内积:在信号处理和傅里叶变换中,共轭复数之和通常用于计算信号的能量或功率,因为它等价于复数和其共轭的内积,这与信号的能量计算有关。
• 平均值:在处理复数序列时,共轭复数之和可以用于计算序列的平均值。
• 信号处理:在数字信号处理中,共轭的概念用于频谱分析,特别是在快速傅里叶变换(FFT)算法中,共轭对称性是一个关键性质。