共轭复数



1https://www.zhihu.com/search?q=%E5%82%85%E9%87%8C%E5%8F%B6%E5%8F%98%E6%8D%A2%E7%9A%84%E6%84%8F%E4%B9%89&search_source=Suggestion&utm_content=search_suggestion&type=content

理科生必懂的逻辑梗------傅里叶变换的意义

共轭复数(Complex Conjugate)是指一个复数的实部相同,而虚部相反的另一个复数。对于复数\(z=a+bi\)(其中\(a\)和\(b\)是实数,\(i\)是虚数单位),它的共轭复数表示为\(\overline{z}=a-bi\)。


共轭复数之和的性质:


• 实数:两个共轭复数相加,结果总是实数。这是因为虚部会相互抵消。


• 模长不变:复数与其共轭复数的和的模长(即复数在复平面上的长度)等于原复数模长的两倍。


• 内积:在信号处理和傅里叶变换中,共轭复数之和通常用于计算信号的能量或功率,因为它等价于复数和其共轭的内积,这与信号的能量计算有关。


• 平均值:在处理复数序列时,共轭复数之和可以用于计算序列的平均值。


• 信号处理:在数字信号处理中,共轭的概念用于频谱分析,特别是在快速傅里叶变换(FFT)算法中,共轭对称性是一个关键性质。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值