机器学习练习与运用
文章平均质量分 90
全栈大王
这个作者很懒,什么都没留下…
展开
-
UFIDL稀疏自编码代码实现及解释
UFIDL稀疏自编码代码实现及解释 1.今天我们来讲一下UFIDL的第一个练习。 1.我们来看看最难的一个.m文件 %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute the cost/optimization objective J_sparse(W,b)原创 2016-04-26 21:02:11 · 2033 阅读 · 0 评论 -
机器学习向量化练习
机器学习向量化练习 在先前的练习里面,我们已经通过对自然图像完成了一个稀疏自编码的练习。在这次我们将通过向量化来使我们运行速度更快,并且我们将把它应用到手写数字里面。 数据下载 MNIST Dataset (Training Images)MNIST Dataset (Training Labels)Support functions for loading MNIST原创 2016-04-30 01:24:49 · 1945 阅读 · 0 评论 -
二维数据的白化处理
二维数据的白化处理 这篇博客实现起来比较简单,首先先去下载pca_2d.zip,然后打开pca_2d.m改代码,具体代码见下面 close all %%================================================================ %% Step 0: Load data % We have provided the code原创 2016-04-30 10:47:38 · 672 阅读 · 0 评论 -
PCA白化
自然图片的PCA白化 在这个练习里面我们将实现PCA和ZCA白化。首先先下载这个文件pca_exercise.zip, 然后我们解压它,并用matlab打开它,我们只需要更改pca_gen.m.这个文件。 然后把代码改成下面这个形式 %%================================================================ %% Step 0a: L原创 2016-04-30 13:51:57 · 683 阅读 · 0 评论 -
Softmax回归
Softmax回归 这次,让我们一起来做Softmax回归。首先我们先去下载。 MNIST DatasetSupport functions for loading MNIST in MatlabStarter Code (softmax_exercise.zip) 同时,这次我们将用到computeNumericalGradient.m这个是在我们做稀疏自编码的时候的。原创 2016-05-01 10:54:41 · 593 阅读 · 1 评论 -
自我学习
自我学习 今天让我们来完成自我学习的代码。完成这个代码需要结合稀疏自编码和softmax分类器,具体的可以看我以前的博客。 依赖 MNIST DatasetSupport functions for loading MNIST in MatlabStarter Code (stl_exercise.zip) 第一步:生成相应的输入和测试数据集 这需要有MNIST的数据,这部分原创 2016-05-01 14:07:46 · 460 阅读 · 0 评论 -
从自我学习到深层网络
从自我学习到深层网络 在前一节中,我们利用自编码器来学习输入至 softmax 或 logistic 回归分类器的特征。这些特征仅利用未标注数据学习获得。在本节中,我们描述如何利用已标注数据进行微调,从而进一步优化这些特征。如果有大量已标注数据,通过微调就可以显著提升分类器的性能。 在自我学习中,我们首先利用未标注数据训练一个稀疏自编码器。随后,给定一个新样本 ,我们通转载 2016-05-01 14:32:51 · 508 阅读 · 0 评论 -
sklearn特征工程
本文转载 使用sklearn做单机特征工程 目录 1 特征工程是什么? 2 数据预处理 2.1 无量纲化 2.1.1 标准化 2.1.2 区间缩放法 2.1.3 标准化与归一化的区别 2.2 对定量特征二值化 2.3 对定性特征哑编码 2.4 缺失值计算 2.5 数据变换 2.6 回顾 3 特征选择 3.1 Filter 3.1.1...转载 2018-11-07 09:10:37 · 396 阅读 · 0 评论