【数学建模】多属性决策模型(评价与决策)

多属性决策模型主要针对数学建模问题中的一些小的子问题进行求解,如果想直接使用请跳转至——
视频回顾

一、算法介绍

  多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.
  多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:
 (1)获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值。
 (2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。信息集结方法有很多,本节只用加权算术平均(WAA)算子,就相当于计算加权平均数。

1. 加权算术平均算子(WAA)

在这里插入图片描述
在这里插入图片描述

2. 属性值归一化处理

在这里插入图片描述

  • 效益型
    在这里插入图片描述
  • 成本型
    在这里插入图片描述
  • 固定型、偏离型
    在这里插入图片描述
  • 区间型、偏离区间型
    在这里插入图片描述

二、适用问题

  • 面临多种方案时,根据多个属性及一定的标准选择某一种方案:
  • 例如:
  1. 银行根据多个属性对公司进行评估

三、算法总结

1. 步骤

  1. 建模构建决策矩阵
  2. 属性值归一化
  3. 对各个属性构造成对比较矩阵计算属性权重
  4. 计算每个公司的WAA

四、应用场景举例(企业评估)

在这里插入图片描述

1. 建模构建决策矩阵

划分各类属性指标的类型,并构建决策矩阵

2. 属性值归一化

根据属性指标类型,代入公式,进行归一化处理
在这里插入图片描述

3. 对各个属性构造成对比较矩阵计算属性权重(层次分析法)

可以参考层次分析法进行属性权重计算
在这里插入图片描述
在这里插入图片描述

4. 计算每个公司的WAA

在这里插入图片描述
在这里插入图片描述

五、MATLAB代码

代码是层次分析法的

disp('请输入判断矩阵A(n阶)');
A=input('A=');
[n,n]=size(A);
x=ones(n,100);
y=ones(n,100);
m=zeros(1,100);
m(1)=max(x(:,1));
y(:,1)=x(:,1);
x(:,2)=A*y(:,1);
m(2)=max(x(:,2));
y(:,2)=x(:,2)/m(2);
p=0.0001;i=2;k=abs(m(2)-m(1));
while  k>p
  i=i+1;
  x(:,i)=A*y(:,i-1);
  m(i)=max(x(:,i));
  y(:,i)=x(:,i)/m(i);
  k=abs(m(i)-m(i-1));
end
a=sum(y(:,i));
w=y(:,i)/a;
t=m(i);
disp(w);
         %以下是一致性检验
CI=(t-n)/(n-1);RI=[0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 1.56 1.58 1.59];
CR=CI/RI(n);
if CR<0.10
    disp('此矩阵的一致性可以接受!');
    disp('CI=');disp(CI);
    disp('CR=');disp(CR);
end

六、实际案例

[1 3 3 3 3;
 1/3 1 1 1 1;
1/3 1 1 1 1;
1/3 1 1 1 1;
1/3 1 1 1 1;]

七、论文案例片段(待完善)

©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页
实付 39.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值