相似矩阵、过渡矩阵

申明: 仅个人小记

一、相似矩阵

P − 1 A P = B {P}^{-1}AP=B P1AP=B

P − 1 A P x ⃗ = B x ⃗ {P}^{-1}AP\vec{x}=B\vec{x} P1APx =Bx

x ⃗ \vec{x} x 是新空间的一个向量, P x ⃗ P\vec{x} Px 表示将新空间向量 x ⃗ \vec{x} x 变换为原空间向量, A P x ⃗ AP\vec{x} APx 是在原空间下做A变换, P − 1 A P x ⃗ {P}^{-1}AP\vec{x} P1APx 是将变换结果反变回新空间, B x ⃗ B\vec{x} Bx 是在新空间下对向量 x ⃗ \vec{x} x 做B变换

对上式进行变形,得 A = P B P − 1 A=PB{P}^{-1} A=PBP1

A y ⃗ = P B P − 1 y ⃗ A\vec{y}=PB{P}^{-1}\vec{y} Ay =PBP1y
此时, y ⃗ \vec{y} y 是原空间的一个向量, P − 1 y ⃗ {P}^{-1}\vec{y} P1y 是将原空间向量 y ⃗ \vec{y} y 变换到新空间, B P − 1 y ⃗ B{P}^{-1}\vec{y} BP1y 则是在新空间中对向量 P − 1 y ⃗ {P}^{-1}\vec{y} P1y 做B变换, P B P − 1 y ⃗ PB{P}^{-1}\vec{y} PBP1y 便是将变换结果 P − 1 y ⃗ {P}^{-1}\vec{y} P1y 变换到原空间。

####二、过渡矩阵
R 3 {R}^{3} R3空间的一个基 A = ( α ⃗ 1 , α ⃗ 2 , α ⃗ 3 ) A=(\vec \alpha _1,\vec \alpha_2,\vec \alpha _3) A=(α 1,α 2,α 3),在取一个新基 B = ( β ⃗ 1 , β ⃗ 2 , β ⃗ 3 ) B=(\vec \beta_1,\vec \beta_2,\vec\beta_3) B=(β 1,β 2,β 3),把矩阵 P = A − 1 B P={A}^{-1}B P=A1B称为旧基A到新基B的过渡矩阵。
为什么这样称呼,看下式: B = A P B=AP B=AP
即对基A做变换P就可以得到基B。(为什么这样,我暂时不清楚,只当是选出一种作为规定吧)。

具体用处, x ⃗ = A − 1 B y ⃗ , 其 中 x ⃗ 是 基 A 下 的 坐 标 , y ⃗ 是 基 B 下 的 坐 标 \vec{x}={A}^{-1}B\vec{y}, 其中\vec{x}是基A下的坐标,\vec{y} 是基B下的坐标 x =A1By ,x Ay B

B y ⃗ B\vec{y} By 是将B基下的向量 y ⃗ \vec y y 变换到原空间, A − 1 B y ⃗ {A}^{-1}B\vec{y} A1By 表示将原空间的向量 B y ⃗ B\vec{y} By 变换到A基下的向量。

谢谢支持!
邮箱: officeforcsdn@163.com
在线性代数中,过渡矩阵(也称为变换矩阵或者转换矩阵)用于表示从一个基底到另一个基底的坐标变化。具体来说,在给定向量空间V内的两个不同有序基$\mathcal{B} = \{\vec{v}_1, \ldots ,\vec{v}_n\}$ 和 $\mathcal{C} = \{\vec{w}_1,\ldots,\vec{w}_n\}$的情况下,存在唯一的$n\times n$矩阵$P_{\mathcal{C}\leftarrow\mathcal{B}}$使得对于任意属于向量空间V的向量$\vec{x}$都有如下关系成立: $$[\vec{x}]_\mathcal{C}= P_{\mathcal{C}\leftarrow\mathcal{B}} [\vec{x}]_\mathcal{B}$$ 这里$[\vec{x}]_\mathcal{B}$代表的是向量$\vec{x}$关于基$\mathcal{B}$的坐标列向量;而$[\vec{x}]_\mathcal{C}$则是该向量相对于基$\mathcal{C}$的坐标。 过渡矩阵$P_{\mathcal{C}\leftarrow\mathcal{B}}$可以通过下面的方法构造出来:考虑由基$\mathcal{B}$中的每一个向量分别在新基$\mathcal{C}$下的坐标组成的列向量所形成的矩阵。即, 若 $$\vec{v}_i=a_{i1}\vec{w}_1+a_{i2}\vec{w}_2+\cdots + a_{in}\vec{w}_n,$$ 则对应的过渡矩阵为 $$P_{\mathcal{C}\leftarrow\mathcal{B}}=\begin{pmatrix} a_{11}&a_{21}&\cdots &a_{n1}\\ a_{12}&a_{22}&\cdots&a_{n2}\\ \vdots&\vdots&\ddots&\vdots\\ a_{1n}&a_{2n}&\cdots&a_{nn} \end{pmatrix},$$ 其中$a_{ij}$是当第$i$个旧基向量以新的基来表达时对应于$\vec{w}_j$坐标的系数。 过渡矩阵具有以下性质: - 如果两组基都是标准正交基,则过渡矩阵是正交矩阵。 - 若已知一组基到另一组基的过渡矩阵,则可以很容易地找到逆过程的过渡矩阵——它就是原过渡矩阵的逆矩阵。 - 对角化过程中使用的相似变换实际上也是一种特殊的过渡矩阵的应用场景之一。 理解过渡矩阵有助于深入掌握线性映射、坐标变换等概念,并且在过渡矩阵的帮助下能够更方便地处理不同基之间的矢量运算问题。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值