关于若尔当矩阵中过渡矩阵的求法

关于若尔当矩阵中过渡矩阵的求法

豆瓜爱数学

豆瓜爱数学

​关注

桜井雪子 等 114 人赞同了该文章

本文主要介绍考研中常考的另一类问题,当我们确认一个Jordan标准形时,对于过渡矩阵如何确定?这个常常是我们复习过程中容易忽略的一部分内容,也是一个失分点,希望大家重视.

例1. 求矩阵A的 若尔当标准形J,并求过渡矩阵P,使得P−1AP=J,其中
A=(232182−2−14−3)

证明:A的特征多项式为:

|λE−A|=|λ−2−3−2−1λ−8−2214λ+3|=(λ−1)(λ−3)2

故A的特征值为1,3(2重).

对于特征值1,它在A的Jordan标准形的主对角线上只出现一次.

对于特征值3,先求出rank(A-3E):

A−3E=(−132152−1−14−6)→(−132084000)

因此rank(A-3E)=2,从而主对角元为3的Jordan块数为3-2=1.于是A的Jordan标准形J为

J=(100031003)

下面我们来求过渡矩阵P,使得

P−1AP=J,

AP=PJ

为此,我们设

P=(X1,X2,X3),

则由 AP=PJ 可得

A(X1,X2,X3)=(X1,X2,X3)(100031003)

(AX1,AX2,AX3)=(X1,3X2,X2+3X3)

于是可得

AX1=X1,AX2=3X2,AX3=X2+3X3

即求解

(A−E)X=0,(A−3E)X=0,(A−3E)X=X2

由 (A−E)X=0 可得

X1=(2,0,−1)′

由 (A−3E)X=0 可得

X2=(1,−1,2)′

下面我们来求解

(A−3E)X=X2,

即增广矩阵为

(−1321152−1−2−14−62)→(152−108400−4−20)→(152−102100000)

易知

X=(−1,0,0)′

是方程的一个特解,就取

X3=(−1,0,0)′,

所以

P=(X1,X2,X3)=(21−10−10−120)

因为|P| ≠0, 所以 P 可逆,为若尔当标准形的过渡矩阵.

岩宝小提示
1.谨记我们在确定过渡矩阵P的时候,P的取法不唯一;对于以上过渡矩阵

P=(X1,X2,X3)

我们如果对P的列向量重新排列,例如我们取

P=(X2,X3,X1)

P−1AP=(310030001)

这一点说明了,在矩阵的Jordan标准形中,除了若尔当块的排列顺序外是唯一确定的,其中若尔当的顺序可以任意调换.

2.有时候考试为了加强难度,再求过渡矩阵的时候,对于本题取定的X2有时候会遇见

(A−3E)X=X2

无解的情况,那么我们该如何处理呢?接下来我们给出一个例题,希望大家掌握.

例2.求矩阵
A=(010−440−212)的若尔当标准形 J,并求出过渡矩阵 P,使得
P−1AP=J

证明:A的特征多项式

|λE−A|=|λ−104λ−402−1λ−2|=(λ−2)3

故A的特征值为2(3重),计算可得

rank⁡(A−2E)=1

故主对角元为2的若尔当块总数为3-1=2.
由此可知A的若尔当标准形J为

J=(200021002)

下面确定过渡矩阵P,设

P=(X1,X2,X3),

使得P−1AP=J.即 AP=PJ. 这等价于

A(X1,X2,X3)=(X1,X2,X3)(010−440−212)

(AX1,AX2,AX3)=(2X1,2X2,X2+2X3)

从而有

(A−2E)X1=0,(A−2E)X2=0,(A−2E)X3=X2

齐次线性方程组

(A−2E)X=0,

A−2E=(−210−420−210)→(1−120000000)

可得一般解为

X=(12x2,x2,x3)′

其中 x2,x3 为自由未知量,取

X2=(12y2,y2,y3)′,

我们对于

(A−2E)X=X2

进行求解,对于增广矩阵化为行阶梯形,即

(A−2E,X2)=(−21012y2−420y2−210y3)→(1−120−14y20000000−12y2+y3)

为了保证

(A−2E)X=X2

有解,我们就需要

y3=12y2,

于是可取

X2=(1,2,1)′

此时在取与X2 线性无关的 X1, 不妨取

X1=(0,0,1)′,

解线性方程组

(A−2E)X=X2,

得到一个特解为

X3=(−12,0,0)′,

于是

P=(X1,X2,X3)=(01−12020110)

易知P可逆,故P满足

P−1AP=J.

岩宝小提示:本题中

y3=12y2

是因为为了保证线性方程组有解,这一点大家一定不要忽略!!!

岩宝同步思考练习

1.(2016郑州大学)求矩阵

A=(−110−430102)

的若尔当标准形,并求出过渡矩阵P,使得P−1AP=J.
2.(2018郑州大学)求矩阵

A=(312121−1−10)

的若尔当标准形,并求出过渡矩阵P,使得P−1AP=J.
3.(2015山东大学)求矩阵

A=(30803−160−20−500002)

的若尔当标准形,并求出过渡矩阵P,使得P−1AP=J.
4.求下列矩阵的若尔当标准形,并求出过渡矩阵P,使得P−1AP=J.
(1)

A=(−1−33−2−6131−48)

(2)

A=(120020−2−2−1)

发布于 2020-07-12 11:56

矩阵

线性方程组

特征值

​赞同 114​​14 条评论

​分享

​喜欢​收藏​申请转载

理性发言,友善互动

14 条评论

默认

最新

梦天forever

梦天forever

诺尔当标准型不是1在下面吗 写上面是一致的吗 还有中间又个小瑕疵 第二问 带入诺尔当标准型的时候代成原矩阵了

2020-10-31

​回复​喜欢

哈哈哈哈哈

哈哈哈哈哈

写上面和写下面是一样的,教材不同,写法不同,都是若尔当标准型

2021-06-14

​回复​喜欢

叭叭叭

叭叭叭

答案在那里呢

2020-10-15

​回复​喜欢

魔法少女沈腾

魔法少女沈腾

请问如果(A-E)X=0只有零解怎么办

2020-08-19

​回复​喜欢

无量天尊

无量天尊

不存在这种情况吧

2022-08-15

​回复​1

知乎用户KWUKgC

知乎用户KWUKgC

换个看法,这是在求矩阵A关于特征值为1对应的特征向量,必定存在.

2023-07-16

​回复​喜欢

杨鑫

杨鑫

可以根据特征矩阵经过初等变换求得初等因子,然后直接由初等因子判断若尔当标准型

2022-08-22

​回复​喜欢

夜航星

夜航星

这个理论性有点强,还是直接硬解可能更适合大部分人

2023-03-25

​回复​喜欢

杨鑫

杨鑫

[爱]

2022-08-22

​回复​喜欢

秋风

秋风

最后一个例子的AP=PJ处J的代入写错了,但下面写的没错

2022-06-06

​回复​喜欢

fwxpeter

fwxpeter

这个第四题的第一小问貌似有点问题呀

[大哭]

2022-04-06

​回复​喜欢

淑芬高黛

淑芬高黛

习题有答案吗

2020-07-22

​回复​喜欢

淑芬高黛

淑芬高黛

豆瓜爱数学

不用了,我用mma验证过了,谢了

[飙泪笑]

2020-07-25

​回复​喜欢

豆瓜爱数学

豆瓜爱数学

作者

有的,到时候会统一发到qq群里

2020-07-25

​回复​喜欢

理性发言,友善互动

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值