Glove、word2vec和fastText的比较

Glove和word2vec的不同点

Glove和word2vec的相同点

word2vec和fastText的不同点

1.输入
fastText输入的是整个句子的n-gram特征(one-hot形式),比word2ve多考虑了subword的向量训练。

word2vec的输入有两种。如果是CBOW算法,输入的是中心词周围的单词。如果是Skip-gram算法,输入的是一个单词。

2.输出
两者输出的内容本质上没有差别,都是类别标签的概率分布。fastText的输出的实际含义为文本类别的概率分布,word2vec输出的含义为单词类别的概率分布。

3.训练方法
fastText的训练属于有监督学习,学习目标是人工标注的分类结果。
word2vec属于自监督学习,通过上下文学习中心词。

word2vec和fastText的相同点

1.两者的模型结构相似,都是一个三层的神经网络模型,输入层,隐藏层,输出层。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值