Glove和word2vec的不同点
Glove和word2vec的相同点
word2vec和fastText的不同点
1.输入
fastText输入的是整个句子的n-gram特征(one-hot形式),比word2ve多考虑了subword的向量训练。
word2vec的输入有两种。如果是CBOW算法,输入的是中心词周围的单词。如果是Skip-gram算法,输入的是一个单词。
2.输出
两者输出的内容本质上没有差别,都是类别标签的概率分布。fastText的输出的实际含义为文本类别的概率分布,word2vec输出的含义为单词类别的概率分布。
3.训练方法
fastText的训练属于有监督学习,学习目标是人工标注的分类结果。
word2vec属于自监督学习,通过上下文学习中心词。
word2vec和fastText的相同点
1.两者的模型结构相似,都是一个三层的神经网络模型,输入层,隐藏层,输出层。