比较简单的一道字符串的题,拿这个练练KMP,加深一下理解。
都说KMP不好理解,曾经自己理解了,但是很长时间不用,发现再次想的时候还有点困难。
void KMP(char *s, char *t, int *f){
int n = strlen(s+1), m = strlen(t+1);
f[1] = f[2] = 1;
for(int i = 2, j = 1; i <= m; j=f[++i]){
while(j > 1 && t[j] != t[i]) j = f[j];
f[i+1] = (t[j]==t[i]) * j + 1;
}
for(int i = 1, j = 1; i <= n; i++){
while(j > 1 && s[i] != t[j]) j = f[j];
if(s[i] == t[j]) j++;
if(j > m) printf("%d ", i-m+1);
}
}
这是模板,第一个for来求失配指针,第二个for进行匹配,复杂度O(n+m)。先说匹配的过程,当某时刻匹配到文本串i与模板串j失配时,就将模板串右移,朴素算法是右移一位,会再次重复比较很多东西,而KMP根据失配指针右移,j=f[j]就是在右移,直到右移到可以匹配或者模板串已经超过i。求失配指针的过程相当于自己与自己匹配。
然而自己理解还不算很彻底,写得可能令人费解。等自己理解清楚了,会再写一遍的。
下面说这道题,每次读入模板串,进行匹配,记录对于文本串的位置i,最远匹配到的位置p1[i],之后再倒过来匹配,记录p2[i]。设maxp[i]表示max{p2[i]~p2[n]},则如果有i满足p1[i]+maxp[i+m] >= m则此模板串满足条件。细节性的问题是m==1是不可以被匹配的。还有就是KMP中记录对于i匹配到的j最远是哪里,只需要把原来输出匹配点改成更新最远匹配位置即可。
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
char s[10005], s2[10005], t[10005], t2[10005];
int n, m, k, cnt, f[10005], p1[10005], p2[10005], maxp[10005];
void KMP(char *s, char *t, int *f, int *p){
f[1] = f[2] = 1;
for(int i = 2, j = 1; i <= m; j=f[++i]){
while(j > 1 && t[j] != t[i]) j = f[j];
f[i+1] = (t[j]==t[i]) * j + 1;
}
for(int i = 1, j = 1; i <= n; i++){
while(j > 1 && s[i] != t[j]) j = f[j];
if(s[i] == t[j]) j++;
p[i-j+1] = j - 1; //i-j+1并不会只是一次被计算到,当i++而模板串没有右移且j++时就会被更新
}
}
int main()
{
scanf("%s %d", s+1, &k);
n = strlen(s+1);
for(int i = 1; i <= n; i++){
s2[i] = s[n-i+1];
}
while(k--){
memset(f, 0, sizeof f);
memset(p1, 0, sizeof p1);
memset(p2, 0, sizeof p2);
memset(maxp, 0, sizeof maxp);
scanf("%s", t+1);
m = strlen(t+1);
if(m == 1) continue;
for(int i = 1; i <= m; i++){
t2[i] = t[m-i+1];
}
KMP(s, t, f, p1);
KMP(s2, t2, f, p2);
for(int i = 1; i*2 <= n; i++){
swap(p2[i], p2[n-i+1]);
}
for(int i = n; i >= m; i--){
maxp[i] = max(maxp[i+1], p2[i]);
}
for(int i = 1; i <= n-m; i++){
if(p1[i]+maxp[i+m] >= m)
{cnt++; break;}
}
}
printf("%d", cnt);
return 0;
}