Tyvj 2016 (Clover 9) 外星人 字符串匹配:KMP

比较简单的一道字符串的题,拿这个练练KMP,加深一下理解。
都说KMP不好理解,曾经自己理解了,但是很长时间不用,发现再次想的时候还有点困难。

void KMP(char *s, char *t, int *f){
    int n = strlen(s+1), m = strlen(t+1);
    f[1] = f[2] = 1;
    for(int i = 2, j = 1; i <= m; j=f[++i]){
        while(j > 1 && t[j] != t[i]) j = f[j];
        f[i+1] = (t[j]==t[i]) * j + 1;
    }
    for(int i = 1, j = 1; i <= n; i++){
        while(j > 1 && s[i] != t[j]) j = f[j];
        if(s[i] == t[j]) j++;
        if(j > m) printf("%d ", i-m+1);
    }
} 

这是模板,第一个for来求失配指针,第二个for进行匹配,复杂度O(n+m)。先说匹配的过程,当某时刻匹配到文本串i与模板串j失配时,就将模板串右移,朴素算法是右移一位,会再次重复比较很多东西,而KMP根据失配指针右移,j=f[j]就是在右移,直到右移到可以匹配或者模板串已经超过i。求失配指针的过程相当于自己与自己匹配。
然而自己理解还不算很彻底,写得可能令人费解。等自己理解清楚了,会再写一遍的。

下面说这道题,每次读入模板串,进行匹配,记录对于文本串的位置i,最远匹配到的位置p1[i],之后再倒过来匹配,记录p2[i]。设maxp[i]表示max{p2[i]~p2[n]},则如果有i满足p1[i]+maxp[i+m] >= m则此模板串满足条件。细节性的问题是m==1是不可以被匹配的。还有就是KMP中记录对于i匹配到的j最远是哪里,只需要把原来输出匹配点改成更新最远匹配位置即可。

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;

char s[10005], s2[10005], t[10005], t2[10005];
int n, m, k, cnt, f[10005], p1[10005], p2[10005], maxp[10005];

void KMP(char *s, char *t, int *f, int *p){
    f[1] = f[2] = 1;
    for(int i = 2, j = 1; i <= m; j=f[++i]){
        while(j > 1 && t[j] != t[i]) j = f[j];
        f[i+1] = (t[j]==t[i]) * j + 1;
    }
    for(int i = 1, j = 1; i <= n; i++){
        while(j > 1 && s[i] != t[j]) j = f[j];
        if(s[i] == t[j]) j++;
        p[i-j+1] = j - 1;  //i-j+1并不会只是一次被计算到,当i++而模板串没有右移且j++时就会被更新
    }
} 

int main()
{
    scanf("%s %d", s+1, &k);
    n = strlen(s+1);
    for(int i = 1; i <= n; i++){
        s2[i] = s[n-i+1];
    }
    while(k--){
        memset(f, 0, sizeof f);
        memset(p1, 0, sizeof p1);
        memset(p2, 0, sizeof p2);
        memset(maxp, 0, sizeof maxp);           
        scanf("%s", t+1);
        m = strlen(t+1);
        if(m == 1) continue;
        for(int i = 1; i <= m; i++){
            t2[i] = t[m-i+1];
        }
        KMP(s, t, f, p1);
        KMP(s2, t2, f, p2);
        for(int i = 1; i*2 <= n; i++){
            swap(p2[i], p2[n-i+1]);
        }
        for(int i = n; i >= m; i--){
            maxp[i] = max(maxp[i+1], p2[i]);
        }
        for(int i = 1; i <= n-m; i++){
            if(p1[i]+maxp[i+m] >= m)
            {cnt++; break;}
        }
    }
    printf("%d", cnt);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值