目录
1.说明
巴斯卡三角形又叫杨辉三角,贾宪三角形 他有以下 性质:
前提:端点的数为1(这不是废话吗,头上那个端点不是1还是三角形吗)
1、每个数等于它上方两数之和。
2、每行数字左右对称,由1开始逐渐变大。
3、第n行的数字有n项。
4、第n行数字和为2n-1。
5、第n行的第m个数和第n-m+1个数相等,即C(n-1,m-1)=C(n-1,n-m)(组合数性质之一)
6、每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即
7、第n行的m个数可表示为C(n-1,m-1)(n-1下标,m-1上标),即为从n-1个不同
元素中取m-1个元素的组合数。组合数计算方法:C(n,m)=n!/[m!(n-m)!]
8、(a+b)^n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
9、将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
10、将各行数字相排列,可得11的n-1ÿ