【蓝桥杯每日一练】 巴斯卡三角形(杨辉三角形)

本文介绍了杨辉三角的多个数学特性,并提供了三种不同的Python实现方式来生成杨辉三角,包括使用生成器实现自定义行数的功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.说明

​2.python实现


1.说明

巴斯卡三角形又叫杨辉三角,贾宪三角形 他有以下 性质:

前提:端点的数为1(这不是废话吗,头上那个端点不是1还是三角形吗)

1、每个数等于它上方两数之和。

2、每行数字左右对称,由1开始逐渐变大。

3、第n行的数字有n项。

4、第n行数字和为2n-1。

5、第n行的第m个数和第n-m+1个数相等,即C(n-1,m-1)=C(n-1,n-m)(组合数性质之一)

6、每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即

7、第n行的m个数可表示为C(n-1,m-1)(n-1下标,m-1上标),即为从n-1个不同

元素中取m-1个元素的组合数。组合数计算方法:C(n,m)=n!/[m!(n-m)!]

8、(a+b)^n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。

9、将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。

10、将各行数字相排列,可得11的n-1ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值