首先以单隐藏层的MLP为例对反向传播的过程进行具体说明:
前向传播
1、网络输入层:训练集上的一小批数据作为输入,将其规范化为:
矩 阵 X , 以 及 对 应 的 类 标 签 向 量 y 矩阵X,以及对应的类标签向量y 矩阵X,以及对应的类标签向量y
2、网络计算隐藏层:全连接层+ReLU
H = m a x { 0 , X W ( 1 ) } H=max{\{0,XW^{(1)}\}} H=max{
0,XW(1)}
3、网络计算输出层:全连接层
H W ( 2 ) HW^{(2)} HW(2)
4、损失函数计算:交叉熵(最小化交叉熵将得到对分类器的最大似然估计)+正则项
J = J M L E + λ ( ∑ i , j ( W i , j ( 1 ) ) 2 + ( W i , j ( 2 ) ) 2 ) J=J_{MLE}+\lambda(\sum_{i,j}{(W_{i,j}^{(1)})^2+(W_{i,j}^{(2)})^2}) J=J
[深度学习基础] 反向传播:简单实例
最新推荐文章于 2024-03-24 11:32:10 发布