[深度学习基础] 反向传播:简单实例

首先以单隐藏层的MLP为例对反向传播的过程进行具体说明:
在这里插入图片描述
前向传播
1、网络输入层:训练集上的一小批数据作为输入,将其规范化为:
矩 阵 X , 以 及 对 应 的 类 标 签 向 量 y 矩阵X,以及对应的类标签向量y X,y
2、网络计算隐藏层:全连接层+ReLU
H = m a x { 0 , X W ( 1 ) } H=max{\{0,XW^{(1)}\}} H=max{ 0,XW(1)}
3、网络计算输出层:全连接层
H W ( 2 ) HW^{(2)} HW(2)
4、损失函数计算:交叉熵(最小化交叉熵将得到对分类器的最大似然估计)+正则项
J = J M L E + λ ( ∑ i , j ( W i , j ( 1 ) ) 2 + ( W i , j ( 2 ) ) 2 ) J=J_{MLE}+\lambda(\sum_{i,j}{(W_{i,j}^{(1)})^2+(W_{i,j}^{(2)})^2}) J=J

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值