[论文笔记] Self-Attention Generative Adversarial Networks

本文针对卷积网络在处理长距离依赖关系上的局限,介绍了Self-Attention Generative Adversarial Networks(SAGAN)。SAGAN引入自注意力机制以学习长范围依赖,改善了生成器和鉴别器的训练稳定性。在ImageNet上生成128X128图像的实验中,SAGAN达到了当时最先进的指标,IS为52.52,FID为18.65。训练过程中采用了谱归一化和TTUR学习率更新等技巧,并通过分析注意力映射来理解模型行为。
摘要由CSDN通过智能技术生成

问题:卷积只有局部的感受野,大范围的依赖关系只能通过多层卷积进行处理。这可能影响网络学习到长依赖关系:1、小模型可能无法学习;2、优化算法可能很难找到多层卷积的合适参数来捕捉这种依赖关系;3、这种参数化可能对之前没见过的图片很不稳定,容易失败。
单纯增大卷积核扩大感受野是个办法,但增大了计算量


文章贡献
1、SAGAN 中引入:引入attention机制学习long range dependency
在这里插入图片描述
2、生成器、鉴别器均引入 spectral normalization提高训练稳定性
在这里插入图片描述
在这里插入图片描述
3、在ImageNet上进行实验,生成128X128大小的图像,达到SOTA指标,IS为52.52,FID为18.65 。(基于50k随机生成样本计算)
在这里插入图片描述


实验细节
1、128X128大小Imagenet训练集,Adam优化器,hinge损失函数,迭代一百万次取最优指标的模型,指标是在50k随机产生的样本上进行计算得出的。
2、文中使用的稳定GAN训练的技巧:

attention map 分析在这里插入图片描述
源码分析

class Self_Attn(nn.Module):
    """ Self attention Layer""
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值