问题:卷积只有局部的感受野,大范围的依赖关系只能通过多层卷积进行处理。这可能影响网络学习到长依赖关系:1、小模型可能无法学习;2、优化算法可能很难找到多层卷积的合适参数来捕捉这种依赖关系;3、这种参数化可能对之前没见过的图片很不稳定,容易失败。
单纯增大卷积核扩大感受野是个办法,但增大了计算量
文章贡献:
1、SAGAN 中引入:引入attention机制
学习long range dependency
2、生成器、鉴别器均引入 spectral normalization
提高训练稳定性
3、在ImageNet上进行实验,生成128X128大小的图像,达到SOTA指标,IS为52.52,FID为18.65 。(基于50k随机生成样本计算)
实验细节:
1、128X128大小Imagenet训练集,Adam优化器,hinge损失函数,迭代一百万次取最优指标的模型,指标是在50k随机产生的样本上进行计算得出的。
2、文中使用的稳定GAN训练的技巧:
- 生成器、鉴别器均引入 spectral normalization,G、D在一次迭代中均优化一次
- TTUR学习率更新方式
attention map 分析
源码分析
class Self_Attn(nn.Module):
""" Self attention Layer""