Self-Attention Generative Adversarial Networks(SAGAN)理解

介绍

Self-Attention Generative Adversarial Networks(SAGAN)是Han Zhang, Ian Goodfellow等人在去年提出的一种新的GAN结构,网络主要引入了注意力机制,不仅解决了卷积结构带来的感受野大小的限制,也使得网络在生成图片的过程中能够自己学习应该关注的不同区域。从结果上来看,SAGAN相比于之前最好的结构,在 Inception score上从36.8提高到了52.52,而 Frechet Inception distance 从27.62降到了18.65,如果对这两个指标不了解,可以看一下我之前的博客GAN的几种评价指标

GAN之前存在的问题: 对于含有较少结构约束的类别,比如海洋、天空等,得到结果较好;而对于含有较多几何或结构约束的类别则容易失败,比如合成图像中狗(四足动物)的毛看起来很真实但手脚很难辨认。这是因为复杂的几何轮廓需要long-range dependencies(长距离依赖),卷积的特点就是局部性,受到感受野大小的限制很难提取到图片中的这些长距离依赖。虽然可以通过加深网络或者扩大卷积核的尺寸一定程度解决该问题,但是这会使卷积网络丧失了其参数和计算的效率优势。

论文的主要贡献:

  1. 把self-attention机制引入到了GAN的框架中,对卷积结构进行了补充,有助于对图像区域中长距离,多层次的依赖关系进行建模,并对该机制做了可视化实验;
  2. 在判别器和生成器中均使用spectral normalization,提升生成器的性能;
  3. 训练中使用Two Timescale Update Rule (TTUR),对判别器使用较高学习率,从而可以保证生成器和判别器可以更新比例为1:1,加快收敛速度,减少训练时间。

实现原理

自注意力机制生成对抗网络

self-attention机制的实现主要受到之前另一篇论文的启发:Non-local Neural Networks<

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值