4阶经典龙格库塔公式求解微分方程

本次求解微分方程,用4阶龙格库塔方法,该方法的代数精度高,比欧拉法,三阶龙格库塔都高,本次的实现很粗糙,由于本人没有熟练掌握函数指针的方式,对于不同微分方程,并不能做到一个普适的输入版本,所以本算法只能对本次的微分方程适用,等掌握了函数指针的用法,再来重写,这次的算法很简陋,也没有做一些越界的异常处理、判断。
代码如下:

//龙哥库塔方法求解微分方程
/*
 *4阶龙格库塔方法,运用了经典公式
 *微分方程如下:  y'=y-2x/y;
                 y(0)=1;
 *函数的输入:数组x是自变量区间数组,数组y是自变量区间y,h为步长的大小,begin为区间的起始,end为区间的末端
 *进行测试的时候,需要自己估算区间的大小,暂时还没有实现自动的功能~.~
*/

#include<iostream>
using namespace std;


void Runge_Kutta(double *x, double* y,double h,double begin,double end)
{
    double K1, K2, K3, K4;
    for (int i = 0; i <= (end - begin) / h; i++)
    {
        x[i] = begin + h*i;
        K1 = y[i] - 2 * x[i] / y[i];
        cout << K1 << "     ";
        K2 = y[i] + h / 2 * K1 - 2 * (x[i] + h / 2) / (y[i] + h / 2 * K1);
        cout << K2 << "      ";
        K3 = y[i] + h / 2 * K2 - 2 * (x[i] + h / 2) / (y[i] + h / 2 * K2);
        cout << K3 << "         ";
        K4 = y[i] + h*K3 - 2 * (x[i] + h) / (y[i] + h*K3);
        cout << K4 << "         ";
        y[i + 1] = y[i] + h / 6 * (K1 + 2 * K2 + 2 * K3 + K4);
        cout << y[i+1]<<endl << endl;
    }
}



int main()
{
    double a[6];
    a[0] = 0.0;
    double y[7];
    y[0] = 1;
    Runge_Kutta(a, y, 0.2, 0.0, 1.0);
    for (int i = 0; i <7; i++)
        cout << y[i] << endl;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值