深度学习几个优化器对比

随机梯度下降 (SGD):

优点:实现简单,长久以来被广泛使用。对于大规模数据集和高维问题,SGD能有效工作。
缺点:收敛速度可能较慢,特别是在目标函数的曲率不均匀的情况下。可能需要仔细调整学习率和其他超参数。
适用场景:适用于大多数深度学习任务,但通常需要较长的训练时间和更多的超参数调整。

带动量的SGD (SGD with Momentum):

优点:引入了动量概念,帮助加速SGD在相关方向上的收敛并抑制振荡,使得学习过程更稳定。
缺点:增加了一个超参数(动量因子),需要调整。
适用场景:当你需要解决SGD收敛速度慢的问题时,动量方法是一个不错的选择。

自适应学习率优化器 (如 Adam):

优点:结合了动量和自适应学习率的优点;不需要手动调整学习率,通常更容易收敛。
缺点:计算上比纯SGD更复杂,内存占用也更高。在某些情况下(尤其是在噪声更大或更复杂的优化问题上)可能会导致不稳定的训练行为。
适用场景:适用于需要快速收敛且对资源消耗不是特别敏感的场景,特别是小至中等规模的数据集。

AdaGrad:

优点:对于稀疏数据效果很好,能够对低频的特征给予更大的更新。
缺点:学习率单调递减,可能在训练后期过早地降低到非常小的数值,从而导致训练提前结束。
适用场景:在处理稀疏数据如自然语言和文本处理问题时表现良好。

RMSprop:

优点:修改了AdaGrad的学习率递减方法,避免了其在长期训练中学习率趋于零的问题。
缺点:虽然比AdaGrad有改进,但在某些非凸问题上可能表现不如Adam。
适用场景:适合处理非平稳目标的问题,如在在线和高度非静态环境中的训练。
不同的优化器根据任务的具体需求和数据特性表现不同。通常,Adam因其稳健性和易于使用而成为许多深度学习应用的首选优化器。然而,传统的SGD和带动量的SGD在需要细粒度控制训练过程或对最终模型精度有极高要求的任务中,仍然是非常有价值的选择。

代码方面

下面,我将为几种常见的优化器提供简单的代码示例,这些示例是使用PyTorch框架编写的。
PyTorch是深度学习中广泛使用的一个开源库,它提供了灵活和强大的工具来构建和训练模型。

随机梯度下降 (SGD)

import torch
import torch.optim as optim

# 模型和参数
model = torch.nn.Linear(10, 1)  # 一个简单的线性模型
optimizer = optim.SGD(model.parameters(), lr=0.01)  # SGD优化器

带动量的SGD (SGD with Momentum)

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)  # 添加动量因子

Adam 优化器

optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

AdaGrad

optimizer = optim.Adagrad(model.parameters(), lr=0.01)  # AdaGrad优化器

RMSprop

optimizer = optim.RMSprop(model.parameters(), lr=0.01)  # RMSprop优化器
  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

楞敲小青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值