OpenAI推出GPT-4o-Audio-Preview,好牛掰,专注于语音处理,分析

什么是GPT-4o-Audio-Preview?

GPT-4o-Audio-Preview是OpenAI推出的一款先进的多模态AI模型,专注于语音处理。它不仅能生成自然流畅的语音响应,还能分析音频输入的情感、语调和音调,支持语音到语音的互动。这使得它在语音助手、虚拟客服等应用中表现出色。

功能特色

  1. 语音生成:根据文本生成自然流畅的语音响应,适用于语音助手和虚拟客服等场景。
  2. 情感分析:分析音频输入的情感、语调和音调,广泛应用于情感计算和用户体验分析领域。
  3. 语音互动:支持语音到语音的互动,音频既可以作为输入也可以作为输出,适用于全方位的语音交互系统。
  4. 多模式支持:支持文本输入生成文本和音频输出,音频输入获得文本和语音输出,以及音频到文本的转换。
  5. 细节处理:在语音生成、情感分析和语音交互方面表现出色,特别注重语调和情感等微妙特征的处理。

厉害之处

  1. 多模态能力:GPT-4o-Audio-Preview能够处理文本、音频和图像的多种组合作为输入和输出,这使得它在多模态交互方面具有强大的应用潜力。
  2. 快速响应时间:该模型能在短短232毫秒内对音频输入做出反应,平均响应时间为320毫秒,这一速度已经达到了人类的级别。
  3. 情感分析:它具备分析音频输入的情感、语调和音调的能力,这使得它在情感计算和用户体验分析领域具有广泛的应用前景。
  4. 语音到语音互动:支持语音到语音的互动,音频既可以作为输入也可以作为输出,为全方位的语音交互系统奠定了基础。
  5. 端到端训练:GPT-4o是OpenAI首个端到端训练的跨越文本、视觉和音频的新模型,所有输入和输出都由相同的神经网络处理。
  6. 记忆能力提升:新版模型还具备了数据分析能力,可以理解并分析用户上传的数据和图表,并在对话中记住用户提过的问题和所有对话,提供连续感。
  7. 多语言支持:GPT-4o有50种语言的版本,并改进了推理的质量和速度,这意味着全球97%的人口都可以使用GPT-4o。

官方地址

官网GPT-4o-Audio-Previewicon-default.png?t=O83Ahttps://www.meoai.net/gpt-4o-audio-preview.html

定价信息

GPT-4o-Audio-Preview采用基于token的计费模式:

  • 文本输入:每百万tokens约5美元。
  • 文本输出:每百万tokens约15美元。
  • 音频输入:每百万tokens约100美元(约合每分钟0.06美元)。
  • 音频输出:每百万tokens约200美元(约合每分钟0.24美元)。

这种定价策略反映了音频处理的复杂性和计算资源需求。

如何使用

  1. 安装OpenAI SDK
    %pip install --upgrade openai --quiet
  2. 模型的音频输出(Audio output from model)
    # 导入所需的库
    import base64  # 用于处理base64编码的库
    from openai import OpenAI  # 导入OpenAI库,用于与OpenAI的API进行交互
    
    # 初始化OpenAI客户端
    client = OpenAI()  # 创建一个OpenAI客户端实例,用于发送请求到OpenAI的API
    
    # 使用GPT-4o-Audio-Preview模型生成音频回答
    completion = client.chat.completions.create(
        model="gpt-4o-audio-preview",  # 指定使用的模型为GPT-4o-Audio-Preview
        modalities=["text", "audio"],  # 指定交互方式包括文本和音频
        audio={"voice": "alloy", "format": "wav"},  # 指定音频的参数,如声音为"alloy",格式为"wav"
        剩余代码访问https://www.meoai.net/gpt-4o-audio-preview.html查看

    请注意,这段代码假设你已经设置了OpenAI的API密钥,并且你的环境已经安装了openai库。如果没有设置API密钥,你需要在环境变量中设置OPENAI_API_KEY或者在代码中直接提供API密钥。此外,这段代码可能需要根据OpenAI的实际API文档进行调整,因为API的细节可能会随着时间而变化。

  3. 模型的音频输入(Audio input to model)
    # 导入所需的库
    import base64  # 用于处理base64编码
    import requests  # 用于发送HTTP请求
    from openai import OpenAI  # 导入OpenAI库,用于与OpenAI的API进行交互
    
    client = OpenAI()  # 初始化OpenAI客户端实例
    
    # 定义音频文件的URL
    url = "https://openaiassets.blob.core.windows.net/$web/API/docs/audio/alloy.wav" 
    
    # 剩余代码访问https://www.meoai.net/gpt-4o-audio-preview.html查看

更多详细使用指南可以参考OpenAI官方文档。

适用场景

  1. 客户服务:提供更自然、更富有情感的语音交互体验,减少客户等待时间,提高满意度。
  2. 教育行业:开发智能语言学习助手,帮助学生提高发音和语调。
  3. 娱乐产业:推动更加逼真的语音合成和虚拟角色互动。
  4. 辅助技术:为听障人士提供更精准的语音转文字服务,或为视障人士提供更丰富的语音描述。
  5. 会议主持:在企业内部会议中充当主持人和助理,整理会议记录和讨论文稿。

GPT-4o-Audio-Preview的推出无疑将为多个行业带来变革性影响,推动语音技术的发展和应用。

### 比较OpenAI GPT-4GPT-4o模型 #### 特征差异 GPT-4代表了OpenAI在大型语言模型技术上的最新进展,具有更高的参数量和改进的架构设计,旨在提供更为流畅自然的语言理解和生成能力。相比之下,关于GPT-4o的信息较少,通常认为这是针对特定优化版本或是内部使用的变体之一[^1]。 #### 性能对比 具体到性能方面,在公开资料中并没有直接提及GPT-4o的具体评测数据。然而,基于一般模式,可以推测GPT-4o可能是在原有基础上做了针对性调整或优化,比如提升了某些应用场景下的效率或者降低了资源消耗等特性。而标准版GPT-4则经过大规模预训练并广泛应用于多种任务场景,其泛化能力和适应范围更加广阔。 #### 应用领域 由于缺乏详细的官方说明文档来描述两者之间的区别,对于想要深入了解两者的不同之处以及各自适用场景的人来说存在一定难度。但从逻辑推断来看,如果存在所谓的"GPT-4o"版本,则很可能是为了满足特殊需求而定制开发出来的分支版本;它或许会在特定行业应用中有更好的表现,或者是专门为某类计算环境进行了适配性改造。 ```python # 这里仅展示如何通过Python代码加载两个假设存在的模型进行简单推理演示, # 实际操作需依据实际可用API接口编写相应程序。 import transformers as trf model_name_4 = "openai/gpt-4" tokenizer_4 = trf.AutoTokenizer.from_pretrained(model_name_4) model_4 = trf.AutoModelForCausalLM.from_pretrained(model_name_4) # 假设GPT-4o也存在于Hugging Face Model Hub中 model_name_4o = "openai/gpt-4o" tokenizer_4o = trf.AutoTokenizer.from_pretrained(model_name_4o) model_4o = trf.AutoModelForCausalLM.from_pretrained(model_name_4o) text_input = ["Tell me about the weather today."] input_ids_4 = tokenizer_4(text_input, return_tensors="pt").input_ids output_4 = model_4.generate(input_ids_4) input_ids_4o = tokenizer_4o(text_input, return_tensors="pt").input_ids output_4o = model_4o.generate(input_ids_4o) print(f'Output from GPT-4:\n{tokenizer_4.decode(output_4[0], skip_special_tokens=True)}') print(f'\nOutput from GPT-4o:\n{tokenizer_4o.decode(output_4o[0], skip_special_tokens=True)}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值