The RcppEigen package provides access from R to the Eigen C++ template library for linear algebra

本文介绍了如何利用Rcpp和RcppEigen包将R代码与C++的Eigen库相结合,以加速线性代数运算,特别是针对大型矩阵。通过将R代码转换为C++,结合Eigen库的高性能计算,可以显著提高运算效率。以5000*5000矩阵运算为例,展示了R与Eigen运算时间的对比,证明了这种方法的有效性。
摘要由CSDN通过智能技术生成

动机:加速加速加速已有R code中的线性运算,包括矩阵运算;

方法:(1)如果是因为循环次数太多,可采用并行运算的处理方式,具体操作做法可参考Let’s be Faster and more Parallel in R with doParallel package | R-bloggers的做法;但是该方法比较耗CPU和内存;如果内存和CPU足够富有的话,不失为一种不错的选择;

(2)OpenBLAS,MKL等等类似的方法,可参考Faster BLAS in R | Brett KlamerQuick Linking Intel® MKL BLAS, LAPACK to R等等;(这部分内容有待进一步学习);

(3)将R code直接用改写成C/C++代码,或者利用Rcpp和RcppEigen将R的便利性与C++中Eigen对矩阵高速运算的优点结合起来,从而达到加速的目的,这也是本文重点介绍的一种方法;

实际操作:(以参考【1】41 Rcpp介绍 | R语言教程中“41.2.3 用sourceCpp()转换C++源文件中的程序”的方法作为链接R和Eigen的做法为例)

step1:创建两个文件,分别是保存C++代码的C++源文件调用C++源文件的R代码

(1)保存C++代码的C++源文件(比如:MatrixOperationR.cpp)//当时这是本文中的示例文件名而已,你可以命名为你想用的任何名字;

// [[Rcpp::depends(RcppEigen)]]
#include <RcppEigen.h>
#include <Rcpp.h>

using namespace std;
using namespace Eigen;

using Eigen::Map;
using Eigen::MatrixXd;
using Eigen::VectorXd;
using Eigen::Transpose;
using Rcpp::wrap;
using Rcpp::Named;
using Eigen::Lower;
using Eigen::LLT;
using Eigen::HouseholderQR;

// [[Rcpp::export]]
SEXP trans_tX_Cpp(const Eigen::Map<Eigen::MatrixXd> A){
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值