使用张量进行去噪的理解

什么是张量

  张量是多维数组的泛概念。一维数组我们通常称之为向量,二维数组我们通常称之为矩阵,但其实这些都是张量的一种。以此类推,我们也会有三维张量、四维张量以及五维张量。那么零维张量是什么呢?其实零维张量就是一个数。

张量的基本操作

两个张量的内积

< χ , y > = ∑ i 1 = 1 I 1 ∑ i 2 = 1 I 2 . . . ∑ i N = 1 I N x i 1 i 2 . . . i N y i 1 i 2 . . . i N <\chi,y>=\sum_{i_1=1}^{I_1} \sum_{i_2=1}^{I_2} ... \sum_{i_N=1}^{I_N} x_{i_1 i_2 ... i_N} y_{i_1 i_2 ... i_N} <χ,y>=i1=1I1i2=1I2...iN=1INxi1i2...iNyi1i2...iN

介绍

o b s e r v a t i o n [ I ] = i m a g e [ I c l e a n ] + n o i s e [ η ] observation[I] = image[I_{clean}]+noise[\eta] observation[I]=image[Iclean]+noise[η]

算法描述

张量简介

高阶奇异值分解(HOSVD)

什么是奇异值分解

  奇异值分解最早是Beltrami与1873年对实正方矩阵提出来的。Beltrami从双线性函数:
f ( x , y ) = x T A y , A ∈ R n × n f(x,y)=x^TAy,A\in \R^{n \times n} f(x,y)=xTAy,ARn×n

出发,通过引入线性变换 x = U ξ x=U \xi x=Uξ y = V η y=V \eta y=Vη,将双线性函数变为 f ( x , y ) = ξ T S η f(x,y)=\xi^TS\eta f(x,y)=ξTSη,其中:
S = U T A V S=U^T A V S=UTAV

矩阵的奇异值分解
  令 A ∈ R m × n A \in \R^{m \times n} ARm×n,则存在正交矩阵 U ∈ R m × m U \in \R^{m \times m} URm×m V ∈ R n × n V \in \R^{n \times n} VRn×n使得:
A = U Σ V T A=U \Sigma V^T A=UΣVT
式中 Σ = [ Σ 1 o o o ] \Sigma=\left[ \begin{array}{cc} \Sigma_1&o\\ o&o \end{array} \right] Σ=[Σ1ooo],且 Σ 1 = d i a g ( σ 1 , σ 2 , ⋅ ⋅ ⋅ , σ r ) \Sigma_1=diag(\sigma_1,\sigma_2,\cdot \cdot \cdot,\sigma_r) Σ1=diag(σ1,σ2,,σr),其对角元素按照顺序
σ 1 ⩾ σ 2 ⩾ ⋅ ⋅ ⋅ σ r > 0 ,     r = r a n k ( A ) \sigma_1 \geqslant \sigma_2 \geqslant \cdot \cdot \cdot \sigma_r >0,~~~r=rank(A) σ1σ2σr>0,   r=rank(A)

排序。
酉矩阵 A ∈ C n × n A \in C^{n \times n} ACn×n,若A满足 A H A = I A^HA=I AHA=I,则称A为酉矩阵。
奇异值分解的理论证明
  设 A ∈ C r m × n ( r > 0 ) A \in C_r^{m \times n}(r>0) ACrm×n(r>0),则存在m阶酉矩阵U和n阶酉矩阵V使得:
U H A V = ( Σ o o o ) U^HAV=\begin{pmatrix}\Sigma&o\\o&o\end{pmatrix} UHAV=(Σooo)

式中: Σ = d i a g ( σ 1 , σ 2 , ⋅ ⋅ ⋅ , σ r ) , σ i \Sigma=diag(\sigma_1,\sigma_2,\cdot \cdot \cdot,\sigma_r),\sigma_i Σ=diag(σ1,σ2,,σr),σi为A的非零奇异值。而:
A = U ( Σ o o o ) V H A=U\begin{pmatrix}\Sigma&o\\o&o\end{pmatrix}V^H A=U(Σooo)VH

称为A的奇异值分解。
证明:由于 A H A A^HA AHA为Hermite阵,则存在n阶酉矩阵V使得:
V H A H A V = d i a g ( λ 1 , λ 2 , ⋅ ⋅ ⋅ , λ n ) = ( Σ 2 o o o ) V^HA^HAV=diag(\lambda_1,\lambda_2,\cdot \cdot \cdot,\lambda_n)=\begin{pmatrix}\Sigma^2&o\\o&o\end{pmatrix} VHAHAV=diag(λ1,λ2,,λn)=(Σ2ooo)

将V分块为:
V = ( V 1 , V 2 )      ( V 1 ∈ C n × r , V 2 ∈ C n × ( n − r ) ) V=(V_1,V_2)~~~~(V_1 \in C^{n \times r},V_2 \in C^{n \times (n-r)}) V=(V1,V2)    (V1Cn×r,V2Cn×(nr))

得:
V 1 H A H A V 1 = Σ 2 , V 2 H A H A V 2 = 0 V_1^HA^HAV_1=\Sigma^2,V_2^HA^HAV_2=0 V1HAHAV1=Σ2,V2HAHAV2=0

于是:
Σ − 1 V 1 H A H A V 1 Σ − 1 = I r , ( A V 2 ) H A V 2 = 0 \Sigma^{-1} V_1^HA^HAV_1 \Sigma^{-1}=I_r,(AV_2)^HAV_2=0 Σ1V1HAHAV1Σ1=Ir,(AV2)HAV2=0

从而 A V 2 = 0 AV_2=0 AV2=0。又记 U 1 = A V 1 Σ − 1 U_1=AV_1 \Sigma^{-1} U1=AV1Σ1,则 U 1 H U 1 = I U_1^HU_1=I U1HU1=I,即 U 1 U_1 U1的r个列是两两正交的单位向量。取 U 2 ∈ C m × ( m − r ) U_2 \in C^{m \times (m-r)} U2Cm×(mr)使 U = ( U 1 , U 2 ) U=(U_1,U_2) U=(U1,U2)为m阶酉矩阵,即 U 2 H U 1 = 0 , U 2 H U 2 = I m − r U_2^HU_1=0,U_2^HU_2=I_{m-r} U2HU1=0,U2HU2=Imr。则有:
U H A V = ( U 1 H U 2 H ) A ( V 1 , V 2 ) = ( U 1 H A V 1 U 1 H A V 2 U 2 H A V 1 U 2 H A V 2 ) = ( U 1 H ( U 1 Σ ) 0 U 2 H ( U 1 Σ ) 0 ) = ( Σ 0 0 0 ) U^HAV=\begin{pmatrix}U_1^H\\ \\U_2^H\end{pmatrix}A\begin{pmatrix}V_1,V_2\end{pmatrix}= \begin{pmatrix}U_1^HAV_1&U_1^HAV_2\\ \\U_2^HAV_1&U_2^HAV_2\end{pmatrix}= \begin{pmatrix}U_1^H(U_1 \Sigma)&0\\ \\U_2^H(U_1 \Sigma)&0\end{pmatrix}= \begin{pmatrix}\Sigma&0\\ \\0&0\end{pmatrix} UHAV=U1HU2HA(V1,V2)=

图像在获取和传输过程中,不可避免地会受到噪声污染,致使图像质量下降,严重影响了后续图像处理工作(如图像超分辨率、图像分割、图像识别、特征提取等。 为了提高图像质量,为后续图像处理提供更可靠真实的图像,对图像进行去噪处理就成为图像处理中一项基础而重要的研究工作。图像去噪的目的是根据观察到的降质图像估计恢复原始真实图像,即在去除噪声同时更好保持图像中的重要结构信息。研究如何更好保持图像的边缘、纹理等重要结构信息的图像去噪模型和算法具有重要的理论意义和实用价值。 本论文以刻画边缘和纹理的图像先验建模为出发点,利用小波变换、核回归及非局部均值等图像去噪方法,重点研究方法中的纹理、边缘等结构保持问题,提出一系列的结构保持的图像去噪模型和新算法。取得的主要成果及创新点如下: (1)提出一种新的基于小波系数相关性的图像去噪方法。利用小波系数多尺度相 关性及小波系数极大值,定义两种基于最大子结点的相关系数,结合小波阈值进行图像去噪,并且将定义的相关系数推广到分数阶B样条小波域。理论分析和实验结果均表明,所提出相关系数在小波分解的高频子带可以很好地刻画图像结构,因而在去噪过程中保留了更多的边缘与纹理等结构信息,提高了去噪图像的质量。 (2)针对基于正则性指数图像去噪方法的不足,提出正则性指数和图像全变差 (Total Variation,TV)正则先验结合的图像去噪模型。该模型利用小波系数与信号J下则性之间的关系,在小波分解的不同尺度,通过改变小波系数来提高图像局部正则性。有效克服了正则性指数去噪算方法在图像边缘处所产生的Gibbs现象,具有较好的边缘结构保持和噪声滤除性能。推广传统小波阈值与TV最小结合的变分模型到分数阶B样条小波,建立分数阶B样条小波域的TV去噪模型。通过分数阶B样条小波阈值和TV范数的结合,得到了对于纹理和边缘等几何结构都有良好保持性能的去噪图像。 (3)利用结构张量矩阵刻画像素局部梯度结构信息,设计了一种新的数据自适应 核函数,提出一种基于结构张量的自适应核回归图像去噪及插值模型。理论和实验表明:本文模型能够准确估计图像中的边缘方向,因而在图像去噪和插值中能够有效重建图像的边缘和纹理等几何结构,视觉效果良好;同时,本文模型的均方误差达到了最小,进一步验证了算法的有效性。 针对Steering核回归模型对于细尺度边缘的不稳定性,应用两种更加鲁棒的核函数,提出两种边缘保持的核回归模型。与高斯核函数相比较,新的核函数具有更快的衰减性。当像素点属于细尺度边缘时,新的核函数对边缘附近像素赋予了更小权重,保证了去噪图像中的边缘细节更加清晰,消除了高斯核函数所出现的伪边缘现象。实验结果证明所提出模型对于纹理较少,细节丰富的图像具有很好重建效果。 (4)耦合Patch相似性保真和非局部,Ⅳ正则性先验,提出一种新的图像去噪变 分模型。该模型利用非局部迭代去噪图像和真实图像间的Patch相似性建立保真项,从而保证了所产生的去噪图像和真实图像之间具有结构相似性。非局部Tv正则项进一步保证了图像中边缘及细小纹理结构的有效保持。与现有相关方法相比较,实验结果表明,所提出方法在去噪同时能够有效保持图像中的边缘及纹理结构信息,特别是对于受噪声污染比较严重的图像,去噪性能和结构保持性能都达到了最好。 (5)利用图像中Patch自相似性,结合Tv正则先验,提出自适应非局部Patch自 相似性正则化模型。与现有非局部权函数计算方法不同,本文利用改进的结构张量矩阵,构造具有自适应和方向性的权函数,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值