对文本kmeans聚类,TF-IDF词频统计,TSNE降维数画散点图显示聚类结果

本文介绍了如何运用TF-IDF进行文本词频统计,并结合k-means聚类算法进行文本分类。接着,通过TSNE降维技术将高维聚类结果转化为二维空间,绘制散点图以直观展示聚类效果。
摘要由CSDN通过智能技术生成
# coding: utf-8
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.cluster import KMeans
#聚类数据准备,字符串矩阵
corpus=[]
titles=[]
with open(r"D:\Neo4j\know——get\pyltp_jufafenxi\quchogfu.txt",encoding="utf-8") as fr:
   for lin in fr:
       if "SOL" not in lin and "O O" not in lin and "I-SOL" not in lin:
           lin=lin.replace("{","")
           lin = lin.replace("'SOL'", "")
           lin = lin.replace(":"
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值