初中数学|求与动点相关的两线段长度之和的最小值

1 题目

  • 周末在家,看到孩子试卷上的一道几何题,求与动点相关的两线段长度之和的最小值。研究了好半天才想出一种解法。感觉挺有意思,拿出来分享一下。
    在这里插入图片描述

  • 如上图, R t △ A B C Rt\triangle ABC RtABC中, ∠ A B C = 90 ° \angle ABC=90\degree ABC=90° ∠ A C B = 30 ° \angle ACB=30\degree ACB=30° D D D是线段 C B CB CB上一动点,以 A D AD AD为边在 A D AD AD下方作等边三角形 A D E ADE ADE,若 S △ A B C = 2 3 S_{\triangle ABC}=2\sqrt{3} SABC=23 ,则 D E + B E DE+BE DE+BE的最小值为___________。

2 思路

  1. “求与动点相关的两线段长度之和的最小值”的问题,绝大多数是通过“两点之间,线段最短”的原理解决:即让两线段相连,固定点位于两端、动点位于中间动点运动至三点共线时,线段长度之和最小。 D E 、 B E DE、BE DEBE中涉及的 B 、 D 、 E B、D、E BDE三点中,有两点为动点,不具备求解的基本条件。

  2. 要多多利用等边三角形,因为它可以提供更多的角度值和边长值。 △ A D E \triangle ADE ADE为等边三角形,所以 D E + B E = A D + B E DE+BE=AD+BE DE+BE=AD+BE。此时,两条线段中有 A 、 B A、B AB两点固定,但动点 D 、 E D、E DE未连接。下一步设法让其连接。
    在这里插入图片描述

  3. 再看 △ A B C \triangle ABC ABC,通过三个角度值 30 °

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测绘驿站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值