初中数学|求与动点相关的两线段长度之和的最小值

1 题目

  • 周末在家,看到孩子试卷上的一道几何题,求与动点相关的两线段长度之和的最小值。研究了好半天才想出一种解法。感觉挺有意思,拿出来分享一下。
    在这里插入图片描述

  • 如上图, R t △ A B C Rt\triangle ABC RtABC中, ∠ A B C = 90 ° \angle ABC=90\degree ABC=90° ∠ A C B = 30 ° \angle ACB=30\degree ACB=30° D D D是线段 C B CB CB上一动点,以 A D AD AD为边在 A D AD AD下方作等边三角形 A D E ADE ADE,若 S △ A B C = 2 3 S_{\triangle ABC}=2\sqrt{3} SABC=23 ,则 D E + B E DE+BE DE+BE的最小值为___________。

2 思路

  1. “求与动点相关的两线段长度之和的最小值”的问题,绝大多数是通过“两点之间,线段最短”的原理解决:即让两线段相连,固定点位于两端、动点位于中间动点运动至三点共线时,线段长度之和最小。 D E 、 B E DE、BE DEBE中涉及的 B 、 D 、 E B、D、E BDE三点中,有两点为动点,不具备求解的基本条件。

  2. 要多多利用等边三角形,因为它可以提供更多的角度值和边长值。 △ A D E \triangle ADE ADE为等边三角形,所以 D E + B E = A D + B E DE+BE=AD+BE DE+BE=AD+BE。此时,两条线段中有 A 、 B A、B AB两点固定,但动点 D 、 E D、E DE未连接。下一步设法让其连接。
    在这里插入图片描述

  3. 再看 △ A B C \triangle ABC ABC,通过三个角度值 30 ° 、 60 ° 、 90 ° 30\degree 、60\degree 、90\degree 30°60°90°,尤其是 60 ° 60\degree 60°,我们应该敏锐的想到这是等边三角形的一半。将其恢复为等边三角形,如图 △ A C F \triangle ACF ACF B B B点是 A F AF AF边的中点。
    在这里插入图片描述

  4. △ A C F \triangle ACF ACF △ A D E \triangle ADE ADE都是等边三角形,从图中容易看出, △ A D E \triangle ADE ADE相当于 △ A C F \triangle ACF ACF A A A点进行了顺时针旋转并缩小,于是, ∠ C A D = ∠ B A E \angle CAD=\angle BAE CAD=BAE
    在这里插入图片描述

  5. 再次利用等边三角形边相等的特点,在 A C AC AC上取中点 G G G。此时, A G = A B AG=AB AG=AB,又因为 A D = A E AD=AE AD=AE,得到 △ A G D ≅ △ A B E \triangle AGD \cong \triangle ABE AGDABE G D = B E GD=BE GD=BE,于是 B E + D E = G D + A D BE+DE = GD+AD BE+DE=GD+AD,实现了“两线段相连,两段为固定点,中间为动点”。
    在这里插入图片描述

  6. 但是,似乎 A 、 G 、 D A、G、D AGD只有当 D 、 C D、C DC重合时才共线。显然,此时的线段长度之和并不是最小。再次利用等边三角形的特性,在 C F CF CF上取中点,得到 D H DH DH。显然 D G = D H DG=DH DG=DH,此时 D E + B E = A D + D H DE+BE=AD+DH DE+BE=AD+DH
    在这里插入图片描述

  7. D D D点沿 C B CB CB移动至 A 、 D 、 H A、D、H ADH共线时, D E + B E = A D + D H = 2 3 DE+BE=AD+DH=2\sqrt{3} DE+BE=AD+DH=23 ,为最小值。

在这里插入图片描述

3 完整的解题过程

第一步:做以下辅助线

  1. 延长 A B AB AB F F F A B = B F AB=BF AB=BF
  2. 连接 C F CF CF
  3. 分别取 A C 、 C F AC、CF ACCF的中点 G 、 H G、H GH,连接 G D 、 D H 、 A H GD、DH、AH GDDHAH

第二步:求证 △ A F C \triangle AFC AFC为等边三角形(其实结果很直观,可以不求证)

  1. ∵ A B = B F 、 ∠ C B A = ∠ C B F = 90 ° 、 B C = B C \because AB=BF、\angle CBA =\angle CBF = 90\degree、BC=BC AB=BFCBA=CBF=90°BC=BC
  2. ∴ △ A B C ≅ △ C B F \therefore \triangle ABC \cong \triangle CBF ABCCBF
  3. ∴ ∠ A C B = ∠ B C F = 30 ° \therefore \angle ACB = \angle BCF = 30\degree ACB=BCF=30°
  4. ∴ ∠ C A F = ∠ A F C = ∠ A C F = 60 ° \therefore \angle CAF = \angle AFC = \angle ACF =60 \degree CAF=AFC=ACF=60°
  5. ∴ △ A C F \therefore \triangle ACF ACF为等边三角形

第三步:求证 D H = B E DH=BE DH=BE

  1. ∵ ∠ C A B = ∠ D A E = 60 ° \because \angle CAB = \angle DAE = 60 \degree CAB=DAE=60° ∠ D A B \angle DAB DAB为公共角
  2. ∴ ∠ C A D = ∠ F A E \therefore \angle CAD = \angle FAE CAD=FAE
  3. ∵ A G = A B 、 A D = A E \because AG = AB、AD = AE AG=ABAD=AE
  4. ∴ △ G A D ≅ △ B A E \therefore \triangle GAD \cong \triangle BAE GADBAE
  5. ∴ G D = B E \therefore GD=BE GD=BE
  6. ∵ G D = D H \because GD=DH GD=DH
  7. ∴ D H = B E \therefore DH=BE DH=BE

第四步:计算 D E + B E DE+BE DE+BE的最小值

  1. 通过以上证明,可以得到: D E + B E = A D + D H DE+BE=AD+DH DE+BE=AD+DH
  2. 从图形中,容易得到,当 A 、 D 、 H A、D、H ADH共线时, A D + D H AD+DH AD+DH值最小,也就是 D E + B E DE+BE DE+BE值最小
  3. 根据已知数据得, A H = B C = S △ A B C × 2 ÷ A B = 2 3 × 2 ÷ 2 = 2 3 AH = BC = S_{\triangle ABC}\times2\div AB = 2 \sqrt{3}\times2\div2=2\sqrt{3} AH=BC=SABC×2÷AB=23 ×2÷2=23
  • 17
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测绘工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值