1 题目
-
周末在家,看到孩子试卷上的一道几何题,求与动点相关的两线段长度之和的最小值。研究了好半天才想出一种解法。感觉挺有意思,拿出来分享一下。
-
如上图, R t △ A B C Rt\triangle ABC Rt△ABC中, ∠ A B C = 90 ° \angle ABC=90\degree ∠ABC=90°, ∠ A C B = 30 ° \angle ACB=30\degree ∠ACB=30°, D D D是线段 C B CB CB上一动点,以 A D AD AD为边在 A D AD AD下方作等边三角形 A D E ADE ADE,若 S △ A B C = 2 3 S_{\triangle ABC}=2\sqrt{3} S△ABC=23,则 D E + B E DE+BE DE+BE的最小值为___________。
2 思路
-
“求与动点相关的两线段长度之和的最小值”的问题,绝大多数是通过“两点之间,线段最短”的原理解决:即让两线段相连,固定点位于两端、动点位于中间,动点运动至三点共线时,线段长度之和最小。 D E 、 B E DE、BE DE、BE中涉及的 B 、 D 、 E B、D、E B、D、E三点中,有两点为动点,不具备求解的基本条件。
-
要多多利用等边三角形,因为它可以提供更多的角度值和边长值。 △ A D E \triangle ADE △ADE为等边三角形,所以 D E + B E = A D + B E DE+BE=AD+BE DE+BE=AD+BE。此时,两条线段中有 A 、 B A、B A、B两点固定,但动点 D 、 E D、E D、E未连接。下一步设法让其连接。
-
再看 △ A B C \triangle ABC △ABC,通过三个角度值 30 °