【高等数学&学习记录】函数的求导法则

一、知识点


(一)常数和基本初等函数的导数公式

  • ( C ) ′ = 0 (C)'=0 (C)=0
  • ( x n ) ′ = n x n − 1 (x^n)'=nx^{n-1} (xn)=nxn1
  • ( s i n x ) ′ = c o s x (sinx)'=cosx (sinx)=cosx
  • ( c o s x ) ′ = − s i n x (cosx)'=-sinx (cosx)=sinx
  • ( t a n x ) ′ = s e c 2 x (tanx)'=sec^2x (tanx)=sec2x
  • ( c o t x ) ′ = − c s c 2 x (cotx)'=-csc^2x (cotx)=csc2x
  • ( s e c x ) ′ = s e c x ⋅ t a n x (secx)'=secx\cdot tanx (secx)=secxtanx
  • ( c s c x ) ′ = − c s c x ⋅ c o t x (cscx)'=-cscx\cdot cotx (cscx)=cscxcotx
  • ( a x ) ′ = a x l n a (a^x)'=a^xlna (ax)=axlna
  • ( e x ) ′ = e x (e^x)'=e^x (ex)=ex
  • ( l o g a x ) ′ = 1 x l n a (log_ax)'=\frac{1}{xlna} (logax)=xlna1
  • ( l n x ) ′ = 1 x (lnx)'=\frac{1}{x} (lnx)=x1
  • ( a r c s i n x ) ′ = 1 1 − x 2 (arcsinx)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1
  • ( a r c c o s x ) ′ = − 1 1 − x 2 (arccosx)'=-\frac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1
  • ( a r c t a n x ) ′ = 1 1 + x 2 (arctanx)'=\frac{1}{1+x^2} (arctanx)=1+x21
  • ( a r c c o t x ) ′ = − 1 1 + x 2 (arccotx)'=-\frac{1}{1+x^2} (arccotx)=1+x21

(二)函数的和、差、积、商的求导法则

  • u = u ( x ) , v = v ( x ) u=u(x),v=v(x) u=u(x),v=v(x) 都可导,则
  • ( u ± v ) ′ = u ′ ± v ′ (u\pm v)'=u'\pm v' (u±v)=u±v
  • ( C u ) ′ = C u ′ (Cu)'=Cu' (Cu)=Cu C C C 是常数)
  • ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv
  • ( u v ) ′ = u ′ v − u v ′ v 2 ( v ≠ 0 ) (\frac{u}{v})'=\frac{u'v-uv'}{v^2}(v\neq 0) (vu)=v2uvuv(v=0)

(三)反函数的求导法则

  • x = f ( y ) x=f(y) x=f(y) 在区间 I y I_y Iy 内单调、可导且 f ′ ( y ) ≠ 0 f'(y)\neq 0 f(y)=0,则它的反函数 y = f − 1 ( x ) y=f^{-1}(x) y=f1(x) I x = f ( I y ) I_x=f(I_y) Ix=f(Iy) 内也可导,且 [ f − 1 ( x ) ] ′ = 1 f ′ ( y ) [f^{-1}(x)]'=\frac{1}{f'(y)} [f1(x)]=f(y)1 d y d x = 1 d x d y \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} dxdy=dydx1.

(四)复合函数的求导法则

  • y = f ( u ) y=f(u) y=f(u),而 u = g ( x ) u=g(x) u=g(x) f ( u ) f(u) f(u) g ( x ) g(x) g(x) 都可导,则复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] 的导数为 d y d x = d y d u ⋅ d u d x \frac{dy}{dx}=\frac{dy}{du}\cdot \frac{du}{dx} dxdy=dudydxdu y ′ ( x ) = f ′ ( u ) ⋅ g ′ ( x ) y'(x)=f'(u)\cdot g'(x) y(x)=f(u)g(x).

二、练习题


  1. 推导余切函数及余割函数的导数公式: ( c o t x ) ′ = − c s c 2 x (cotx)'=-csc^2x (cotx)=csc2x ( c s c x ) ′ = − c s c x ⋅ c o t x (cscx)'=-cscx\cdot cotx (cscx)=cscxcotx.
  • 推导:
  • (1) 推导余切函数的导数公式:
    ( c o t x ) ′ (cotx)' (cotx)
    = ( c o s x s i n x ) ′ =(\frac{cosx}{sinx})' =(sinxcosx)
    = ( c o s x ) ′ s i n x − c o s x ( s i n x ) ′ s i n 2 x =\frac{(cosx)'sinx-cosx(sinx)'}{sin^2x} =sin2x(cosx)sinxcosx(sinx)
    = − s i n 2 x − c o s 2 x s i n 2 x =\frac{-sin^2x-cos^2x}{sin^2x} =sin2xsin2xcos2x
    = − 1 s i n 2 x =-\frac{1}{sin^2x} =sin2x1
    = − c s c 2 x =-csc^2x =csc2x
  • (2) 推导余割函数的导数公式:
    ( c s c x ) ′ (cscx)' (cscx)
    = ( 1 s i n x ) ′ =(\frac{1}{sinx})' =(sinx1)
    = − c o s x s i n 2 x =\frac{-cosx}{sin^2x} =sin2xcosx
    = − c s c x ⋅ c o t x =-cscx\cdot cotx =cscxcotx.

  1. 求下列函数的导数:
  • (1) y = x 3 + 7 x 4 − 2 x + 12 y=x^3+\frac{7}{x^4}-\frac{2}{x}+12 y=x3+x47x2+12
    y ′ = 3 x 2 − 28 x 5 + 2 x 2 y'=3x^2-\frac{28}{x^5}+\frac{2}{x^2} y=3x2x528+x22
  • (2) y = 5 x 3 − 2 x + 3 e x y=5x^3-2^x+3e^x y=5x32x+3ex
    y ′ = 15 x 2 − 2 x l n 2 + 3 e x y'=15x^2-2^xln2+3e^x y=15x22xln2+3e
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测绘驿站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值