一、知识点
(一)常数和基本初等函数的导数公式
- ( C ) ′ = 0 (C)'=0 (C)′=0
- ( x n ) ′ = n x n − 1 (x^n)'=nx^{n-1} (xn)′=nxn−1
- ( s i n x ) ′ = c o s x (sinx)'=cosx (sinx)′=cosx
- ( c o s x ) ′ = − s i n x (cosx)'=-sinx (cosx)′=−sinx
- ( t a n x ) ′ = s e c 2 x (tanx)'=sec^2x (tanx)′=sec2x
- ( c o t x ) ′ = − c s c 2 x (cotx)'=-csc^2x (cotx)′=−csc2x
- ( s e c x ) ′ = s e c x ⋅ t a n x (secx)'=secx\cdot tanx (secx)′=secx⋅tanx
- ( c s c x ) ′ = − c s c x ⋅ c o t x (cscx)'=-cscx\cdot cotx (cscx)′=−cscx⋅cotx
- ( a x ) ′ = a x l n a (a^x)'=a^xlna (ax)′=axlna
- ( e x ) ′ = e x (e^x)'=e^x (ex)′=ex
- ( l o g a x ) ′ = 1 x l n a (log_ax)'=\frac{1}{xlna} (logax)′=xlna1
- ( l n x ) ′ = 1 x (lnx)'=\frac{1}{x} (lnx)′=x1
- ( a r c s i n x ) ′ = 1 1 − x 2 (arcsinx)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)′=1−x21
- ( a r c c o s x ) ′ = − 1 1 − x 2 (arccosx)'=-\frac{1}{\sqrt{1-x^2}} (arccosx)′=−1−x21
- ( a r c t a n x ) ′ = 1 1 + x 2 (arctanx)'=\frac{1}{1+x^2} (arctanx)′=1+x21
- ( a r c c o t x ) ′ = − 1 1 + x 2 (arccotx)'=-\frac{1}{1+x^2} (arccotx)′=−1+x21
(二)函数的和、差、积、商的求导法则
- 设 u = u ( x ) , v = v ( x ) u=u(x),v=v(x) u=u(x),v=v(x) 都可导,则
- ( u ± v ) ′ = u ′ ± v ′ (u\pm v)'=u'\pm v' (u±v)′=u′±v′
- ( C u ) ′ = C u ′ (Cu)'=Cu' (Cu)′=Cu′( C C C 是常数)
- ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)′=u′v+uv′
- ( u v ) ′ = u ′ v − u v ′ v 2 ( v ≠ 0 ) (\frac{u}{v})'=\frac{u'v-uv'}{v^2}(v\neq 0) (vu)′=v2u′v−uv′(v=0)
(三)反函数的求导法则
- 设 x = f ( y ) x=f(y) x=f(y) 在区间 I y I_y Iy 内单调、可导且 f ′ ( y ) ≠ 0 f'(y)\neq 0 f′(y)=0,则它的反函数 y = f − 1 ( x ) y=f^{-1}(x) y=f−1(x) 在 I x = f ( I y ) I_x=f(I_y) Ix=f(Iy) 内也可导,且 [ f − 1 ( x ) ] ′ = 1 f ′ ( y ) [f^{-1}(x)]'=\frac{1}{f'(y)} [f−1(x)]′=f′(y)1 或 d y d x = 1 d x d y \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}} dxdy=dydx1.
(四)复合函数的求导法则
- 设 y = f ( u ) y=f(u) y=f(u),而 u = g ( x ) u=g(x) u=g(x) 且 f ( u ) f(u) f(u) 及 g ( x ) g(x) g(x) 都可导,则复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] 的导数为 d y d x = d y d u ⋅ d u d x \frac{dy}{dx}=\frac{dy}{du}\cdot \frac{du}{dx} dxdy=dudy⋅dxdu 或 y ′ ( x ) = f ′ ( u ) ⋅ g ′ ( x ) y'(x)=f'(u)\cdot g'(x) y′(x)=f′(u)⋅g′(x).
二、练习题
- 推导余切函数及余割函数的导数公式: ( c o t x ) ′ = − c s c 2 x (cotx)'=-csc^2x (cotx)′=−csc2x, ( c s c x ) ′ = − c s c x ⋅ c o t x (cscx)'=-cscx\cdot cotx (cscx)′=−cscx⋅cotx.
- 推导:
- (1) 推导余切函数的导数公式:
( c o t x ) ′ (cotx)' (cotx)′
= ( c o s x s i n x ) ′ =(\frac{cosx}{sinx})' =(sinxcosx)′
= ( c o s x ) ′ s i n x − c o s x ( s i n x ) ′ s i n 2 x =\frac{(cosx)'sinx-cosx(sinx)'}{sin^2x} =sin2x(cosx)′sinx−cosx(sinx)′
= − s i n 2 x − c o s 2 x s i n 2 x =\frac{-sin^2x-cos^2x}{sin^2x} =sin2x−sin2x−cos2x
= − 1 s i n 2 x =-\frac{1}{sin^2x} =−sin2x1
= − c s c 2 x =-csc^2x =−csc2x - (2) 推导余割函数的导数公式:
( c s c x ) ′ (cscx)' (cscx)′
= ( 1 s i n x ) ′ =(\frac{1}{sinx})' =(sinx1)′
= − c o s x s i n 2 x =\frac{-cosx}{sin^2x} =sin2x−cosx
= − c s c x ⋅ c o t x =-cscx\cdot cotx =−cscx⋅cotx.
- 求下列函数的导数:
- (1) y = x 3 + 7 x 4 − 2 x + 12 y=x^3+\frac{7}{x^4}-\frac{2}{x}+12 y=x3+x47−x2+12
y ′ = 3 x 2 − 28 x 5 + 2 x 2 y'=3x^2-\frac{28}{x^5}+\frac{2}{x^2} y′=3x2−x528+x22 - (2) y = 5 x 3 − 2 x + 3 e x y=5x^3-2^x+3e^x y=5x3−2x+3ex
y ′ = 15 x 2 − 2 x l n 2 + 3 e x y'=15x^2-2^xln2+3e^x y′=15x2−2xln2+3e