【高等数学&学习记录】函数的连续性与间断点

一、知识点


(一)函数的连续性


1. 函数连续

  • 设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 的某一邻域内有定义,如果 lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 [ f ( x 0 + Δ ) − f ( x 0 ) ] = 0 \lim_{\Delta x\rightarrow 0}\Delta y=\lim_{\Delta x\rightarrow 0}[f(x_0+\Delta)-f(x_0)]=0 limΔx0Δy=limΔx0[f(x0+Δ)f(x0)]=0,那么就称函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0 连续。
  • 或者:设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 的某一邻域内有定义,如果 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_0}f(x)=f(x_0) limxx0f(x)=f(x0) 那么就称函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 连续。

2. 左连续

  • 如果 lim ⁡ x → x 0 − f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_0^-}f(x)=f(x_0) limxx0f(x)=f(x0) 存在且等于 f ( x 0 ) f(x_0) f(x0),即 f ( x 0 − ) = f ( x 0 ) f(x_0^-)=f(x_0) f(x0)=f(x0),就说函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 左连续。

3. 右连续

  • 如果 lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_0^+}f(x)=f(x_0) limxx0+f(x)=f(x0) 存在且等于 f ( x 0 ) f(x_0) f(x0),即 f ( x 0 + ) = f ( x 0 ) f(x_0^+)=f(x_0) f(x0+)=f(x0) ,就说函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 右连续。

4. 连续函数

  • 在区间上每一点都连续的函数,叫做在该区间上的连续函数,或者说函数在该区间上连续。如果区间包括端点,那么函数在右端点连续是指左连续,在左端点连续是指右连续。

(二)函数的间断点


1. 函数间断点的定义

  • 设函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的某去心邻域内有定义。如果函数 f ( x ) f(x) f(x) 有下列三种情况之一:
    (1) 在 x = x 0 x=x_0 x=x0 没有定义;
    (2) 虽在 x = x 0 x=x_0 x=x0 有定义,但 lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_0}f(x) limxx0f(x) 不存在;
    (3) 虽在 x = x 0 x=x_0 x=x0 有定义,且 lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_0}f(x) limxx0f(x) 存在,但 lim ⁡ x → x 0 f ( x ) ≠ f ( x 0 ) \lim_{x\rightarrow x_0}f(x)\neq f(x_0) limxx0f(x)=f(x0)
    则函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 为不连续,点 x 0 x_0 x0 称为函数 f ( x ) f(x) f(x) 的不连续点或间断点。

2. 几种常见间断点

  • 无穷间断点:
    例如,函数 y = t a n x y=tanx y=tanx x = π 2 x=\frac{\pi}{2} x=2π 处没有定义,此处是函数的间断点;因 lim ⁡ x → π 2 t a n x = ∞ \lim_{x\rightarrow \frac{\pi}{2}}tanx=\infty limx2πtanx=,则 x = π 2 x=\frac{\pi}{2} x=2π 称为函数 t a n x tanx tanx 的无穷间断点。
  • 振荡间断点:
    例如,函数 y = s i n 1 x y=sin\frac{1}{x} y=sinx1 x = 0 x=0 x=0 处没有定义,此处是函数的间断点;当 x → 0 x\rightarrow 0 x0 时,函数值在 − 1 -1 1 + 1 +1 +1 之间变动无限多次,则点 x = 0 x=0 x=0 称为 函数 y = s i n 1 x y=sin\frac{1}{x} y=sinx1 的振荡间断点。
  • 可去间断点:
    例如,函数 y = x 2 − 1 x − 1 y=\frac{x^2-1}{x-1} y=x1x21 x = 1 x=1 x=1 处没有定义,此处是函数的间断点,但 lim ⁡ x → 1 x 2 − 1 x − 1 = lim ⁡ x → 1 ( x = 1 ) = 2 \lim_{x\rightarrow 1}\frac{x^2-1}{x-1}=\lim_{x\rightarrow 1}(x=1)=2 limx1x1x21=limx1(x=1)=2。如果补充定义,令 x = 1 x=1 x=1 时, y = 2 y=2 y=2 则函数连续。因此,称 x = 1 x=1 x=1 为该函数的可去间断点。
  • 跳跃间断点:
    例如,函数 f ( x ) = { x − 1 , x < 0 0 , x = 0 x + 1 , x > 0 f(x)=\begin{cases}x-1,&x<0\\0,&x=0\\x+1,&x>0\end{cases} f(x)=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测绘驿站

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值