FZU 2180 骑士 (双向BFS)

Description

在一个5×5的棋盘上有12个白色的骑士和12个黑色的骑士, 且有一个空位。在任何时候一个骑士都能按照骑士的走法(它可以走到和它横坐标相差为1,纵坐标相差为2或者横坐标相差为2,纵坐标相差为1的格子)移动到空位上。

给定一个初始的棋盘,怎样才能经过移动变成如下目标棋盘: 为了体现出骑士精神,他们必须以最少的步数完成任务。

Input

第一行有一个正整数T(T<=10) 表示一共有T组数据 接下来有T个5*5的矩形。0表示白色骑士1表示黑色骑士,*表示空位。(每组数据间有空行)

Output

对每组数据都输出一行。如果能在15不以内(包括15)到达目标状态,则输出步数,否则输出“Bored!”没有引号。

Sample Input

2
10110
01*11
10111
01001
00000

01011
110*1
01110
01010
00100

Sample Output

7
Bored!
分析:我写的是双向BFS,在bfs过程中如何查找一个矩阵有没有出现过喃?最容易想到的就是矩阵hash+map轻松解决,但是由于此题矩阵大小为5*5,最多25,我们可以换个方法,我们首先把整个矩阵编号,上到下左到右依次从0开始编号,记(i,j)位置编号为id[i][j]。我们另开一个变量state=0,如果图中(i,j)位置为“1”,那么state | = (1<<id[i][j]);如果图不同那么state就不同,但是别忘了图中还有空位,即“*”,所以我们还需要一个变量pos记录这个“*”位置的编号,然后就可以根据state与pos决定两个图是不是一样了,用map+pair查找就行了
#include<stdio.h>
#include<string.h>
#include<map>
#include<queue>
#include<algorithm>
#define inf 1e8
using namespace std;
char a[10][10]={"11111","01111","00*11","00001","00000"};
char b[10][10];
int state1,pos1,state2,pos2;
struct node
{
    int state;///图中“1”分布的状态
    int pos;///“*”的位置编号
    int dis;///步数
};
int id[10][10];///记录个点编号
const int f[8][2]={1,-2,1,2,2,1,2,-1,-1,2,-1,-2,-2,1,-2,-1};
int bfs()
{
    queue<node> q1,q2;
    map<pair<int,int>,int> m1,m2;///map映射的是步数
    pair<int,int> p1,p2;
    node now1,next1;
    node now2,next2;
    ///正向
    now1.state=state1;
    now1.pos=pos1;
    now1.dis=1;
    q1.push(now1);
    p1=make_pair(state1,pos1);
    m1[p1]=1;
    ///逆向
    now2.state=state2;
    now2.pos=pos2;
    now2.dis=1;
    q2.push(now2);
    p2=make_pair(state2,pos2);
    m2[p2]=1;

    if(state1==state2&&pos1==pos2) return 0;///一开始就是答案,输出0

    while(q1.size()&&q2.size())
    {
        ///正向
        now1=q1.front();
        q1.pop();
        if(now1.dis>=9) return -1;
        int x,y;///将pos还原成坐标
        x=now1.pos/5;
        y=now1.pos%5;
        for(int i=0;i<8;i++)
        {
            int mx=x+f[i][0];
            int my=y+f[i][1];
            if(mx<0||mx>=5||my<0||my>=5) continue;
            ///接下来将‘*’与(mx,my)处的值交换
            next1.pos=id[mx][my];
            next1.dis=now1.dis+1;
            next1.state=now1.state;///暂且存下来等待交换
            if(now1.state&(1<<id[mx][my]))///该位置为1(为0就不管state,因为不会改变图中“1”的分布情况)
            {
                next1.state|=(1<<id[x][y]);///将1交换到(x,y)处
                next1.state^=(1<<id[mx][my]);///由于(mx,my)处被换成了‘*’,所以该地方的1要清掉
            }
            p1=make_pair(next1.state,next1.pos);
            if(m1.find(p1)==m1.end())///用find高效很多,如果该处写成if(!m1[p1]) 会慢很多,因为map非法查询会多内存,会变很慢

            {
                if(m2.find(p1)!=m2.end()) return next1.dis+m2[p1]-2;
                m1[p1]=next1.dis;
                q1.push(next1);
            }
        }
        ///逆向
        now2=q2.front();
        q2.pop();
        if(now2.dis>=8) return -1;
        x=now2.pos/5;
        y=now2.pos%5;
        for(int i=0;i<8;i++)
        {
            int mx=x+f[i][0];
            int my=y+f[i][1];
            if(mx<0||mx>=5||my<0||my>=5) continue;
            next2.pos=id[mx][my];
            next2.dis=now2.dis+1;
            next2.state=now2.state;
            if(now2.state&(1<<id[mx][my]))
            {
                next2.state|=(1<<id[x][y]);
                next2.state^=(1<<id[mx][my]);
            }
            p2=make_pair(next2.state,next2.pos);
            if(m2.find(p2)==m2.end())
            {
                if(m1.find(p2)!=m1.end()) return next2.dis+m1[p2]-2;
                m2[p2]=next2.dis;
                q2.push(next2);
            }
        }
    }
    return -1;
}
void init()
{
    int num=0;
    for(int i=0;i<5;i++)
        for(int j=0;j<5;j++)
        id[i][j]=num++;
    state1=0;
    for(int i=0;i<5;i++)
        for(int j=0;j<5;j++)
    {
        if(a[i][j]=='1') state1|=(1<<id[i][j]);
        if(a[i][j]=='*') pos1=id[i][j];
    }
}
int main()
{
    init();///初始的图是不会变的,预先处理就行
    int T;
    scanf("%d",&T);
    while(T--)
    {
        state2=0;
        for(int i=0;i<5;i++)
        {
            scanf("%s",b[i]);
            for(int j=0;j<5;j++)
            {
                if(b[i][j]=='1') state2|=(1<<id[i][j]);
                if(b[i][j]=='*') pos2=id[i][j];
            }
        }
        int res=bfs();
        if(res==-1||res>15) puts("Bored!");
        else printf("%d\n",res);
    }
    return 0;
}



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值