论文每天读
流浪机器人
机器人科学与工程在读博士
研究方向-语义分割,深度估计,3D目标跟踪,深度学习&SLAM,动态物体分割
展开
-
#每天一篇论文 269/365 ActiveStereoNet: End-to-End Self-SupervisedLearning for Active Stereo Systems
ActiveStereoNet:主动双目系统端到端自监督学习https://blog.csdn.net/goodanchor/article/details/81557631原创 2019-11-22 00:21:41 · 342 阅读 · 0 评论 -
#每天一篇论文 Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud
Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud单目伪激光雷达点云3D目标检测摘要单目3D场景理解任务,例如目标大小估计,车头角度估计和3D位置估计,非常具有挑战性。当前成功的三维场景理解方法需要使用三维传感器。另一方面,基于单一图像的方法性能明显较差。在这项工作中,我们的目标是通过增强基于激光雷达的算法来处理单个图像输入...原创 2019-11-21 00:12:56 · 2029 阅读 · 0 评论 -
#每天一篇论文 265/365 Real-Time Dense Depth Estimation using Semantically-Guided LIDAR Data Propagation an
使用语义引导的雷达数据和运动双目相机的实时稠密相机重建使用稀疏雷达数据和语义边界引导从图像序列估计稠密深度Real-Time Dense Depth Estimation using Semantically-Guided LIDAR Data Propagation and Motion Stereo摘要本文提出了一种基于稀疏激光雷达点云和图像序列估计稠密深度图的方法。我们提出的方法依赖...原创 2019-11-15 12:40:46 · 352 阅读 · 0 评论 -
#每天一篇论文#(216/365)Adaptive Tracking Control of Nonholonomic Mobile Manipulators Using Recurrent Neura
A.摘要研究了一类非完整移动机器人在存在不确定性和扰动的情况下的轨迹跟踪问题。首先,在假定移动机械手运动子系统能够转化为链形的前提下,在不考虑外界干扰的情况下,精确地了解移动机械手的运动子系统,设计了一种基于模型的转矩级控制器采用反步设计技术。然而,基于模型的控制可能不适用于实际应用,因为移动机械手的动力学中不可避免地存在不确定性和干扰。因此,在不需要对系统动力学有明确了解的情况下,开发了一种基...原创 2019-09-02 00:39:12 · 287 阅读 · 0 评论 -
#每天一篇论文微习惯# (215/365) DA-RNN: Semantic Mapping with Data Associated Recurrent Neural Networks
摘要三维场景理解对于机器人以有意义的方式与三维世界进行交互非常重要。以前大多数关于三维场景理解的工作都侧重于独立地识别场景的几何或语义属性。在这项工作中,我们介绍了数据相关的递归神经网络(da rnns),这是一个新的框架,用于联合三维场景映射和语义标记。DARNN使用一种新的递归神经网络结构对RGB-D视频进行语义标记。该网络的输出与Kinect Fusion等映射技术相结合,将语义信息注入到...原创 2019-09-01 22:40:58 · 814 阅读 · 0 评论 -
#每天一篇论文#(214/365) Fusenet:通过基于融合CNN架构将深度融入语义分割
**FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture在本文中,我们解决了室内场景理解的问题,假设RGB和深度信息同时可用(见图1)。这个问题在包括机器人在内的许多感知应用中相当关键。我们注意到,虽然室内场景具有丰富的语义信息,但由于对象的遮挡和背景的杂乱,它们通常比...原创 2019-08-30 22:09:40 · 2458 阅读 · 0 评论 -
#每天一篇论文#(213/365) Joint 2D-3D-Semantic Data for Indoor Scene Understanding 结合2D-3D室内语义数据场景理解
Joint 2D-3D-Semantic Data for Indoor Scene Understandinghttp://3Dsemantics.stanford.edu/A.摘要本文提供了一个大型室内空间的数据集,它提供了从二维、2.5d和三维域相互注册的各种模式,具有实例级语义和几何注释。数据集占地超过6000m2它包含超过70000个RGB图像,以及相应的深度、曲面法线、语义注释、...原创 2019-08-29 18:45:41 · 1569 阅读 · 3 评论 -
#每天一篇论文#(212/365)Learning Lightweight Lane Detection CNNs by Self Attention Distillation
Learning Lightweight Lane Detection CNNs by Self Attention DistillationA.摘要由于车道注释中固有的非常细微和稀疏的监控信号,因此训练用于车道检测的深层模型具有挑战性。如果不从更丰富的环境中学习,这些模型通常会在具有挑战性的场景中失败,例如严重的遮挡、不明确的车道和糟糕的照明条件。在本文中,我们提出了一种新的知识蒸馏方法,即...原创 2019-08-28 23:07:15 · 2080 阅读 · 1 评论